Skip to main content

Distibuted dbt runs on Apache Airflow

Project description

PyPI - Version GitHub Build

License PyPI - Python Version PyPI - Downloads

Poetry Code style: black

dbt-af: distributed run of dbt models using Airflow

Overview

dbt-af is a tool that allows you to run dbt models in a distributed manner using Airflow. It acts as a wrapper around the Airflow DAG, allowing you to run the models independently while preserving their dependencies.

dbt-af

Why?

  1. dbt-af is domain-driven. It is designed to separate models from different domains into different DAGs. This allows you to run models from different domains in parallel.
  2. dbt-af is dbt-first solution. It is designed to make analytics' life easier. End-users could even not know that Airflow is used to schedule their models. dbt-model's config is an entry point for all your settings and customizations.
  3. dbt-af brings scheduling to dbt. From @monthly to @hourly and even more.
  4. dbt-af is an ETL-driven tool. You can separate your models into tiers or ETL stages and build graphs showing the dependencies between models within each tier or stage.
  5. dbt-af brings additional features to use different dbt targets simultaneously, different tests scenarios, and maintenance tasks.

Installation

To install dbt-af run pip install dbt-af.

To contribute we recommend to use poetry to install package dependencies. Run poetry install --with=dev to install all dependencies.

dbt-af by Example

All tutorials and examples are located in the examples folder.

To get basic Airflow DAGs for your dbt project, you need to put the following code into your dags folder:

# LABELS: dag, airflow (it's required for airflow dag-processor)
from dbt_af.dags import compile_dbt_af_dags
from dbt_af.conf import Config, DbtDefaultTargetsConfig, DbtProjectConfig

# specify here all settings for your dbt project
config = Config(
    dbt_project=DbtProjectConfig(
        dbt_project_name='my_dbt_project',
        dbt_project_path='/path/to/my_dbt_project',
        dbt_models_path='/path/to/my_dbt_project/models',
        dbt_profiles_path='/path/to/my_dbt_project',
        dbt_target_path='/path/to/my_dbt_project/target',
        dbt_log_path='/path/to/my_dbt_project/logs',
        dbt_schema='my_dbt_schema',
    ),
    dbt_default_targets=DbtDefaultTargetsConfig(default_target='dev'),
    is_dev=False,  # set to True if you want to turn on dry-run mode
)

dags = compile_dbt_af_dags(manifest_path='/path/to/my_dbt_project/target/manifest.json', config=config)
for dag_name, dag in dags.items():
    globals()[dag_name] = dag

In dbt_project.yml you need to set up default targets for all nodes in your project (see example):

sql_cluster: "dev"
daily_sql_cluster: "dev"
py_cluster: "dev"
bf_cluster: "dev"

This will create Airflow DAGs for your dbt project.

Features

  1. dbt-af is essentially designed to work with large projects (1000+ models). When dealing with a significant number of dbt objects across different domains, it becomes crucial to have all DAGs auto-generated. dbt-af takes care of this by generating all the necessary DAGs for your dbt project and structuring them by domains.
  2. Each dbt run is separated into a different Airflow task. All tasks receive a date interval from the Airflow DAG context. By using the passed date interval in your dbt models, you ensure the idempotency of your dbt runs.
  3. dbt-af lowers the entry threshold for non-infrastructure team members. This means that analytics professionals, data scientists, and data engineers can focus on their dbt models and important business logic rather than spending time on Airflow DAGs.

Project Information

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt_af-0.5.3.tar.gz (40.4 kB view details)

Uploaded Source

Built Distribution

dbt_af-0.5.3-py3-none-any.whl (53.8 kB view details)

Uploaded Python 3

File details

Details for the file dbt_af-0.5.3.tar.gz.

File metadata

  • Download URL: dbt_af-0.5.3.tar.gz
  • Upload date:
  • Size: 40.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dbt_af-0.5.3.tar.gz
Algorithm Hash digest
SHA256 bbba62d883ac43b2cd0eaf3fed4fac4bd7272d46f88822d3b11b955342c55e0e
MD5 0d6a67226f5baa100870fdcc7dee6f03
BLAKE2b-256 ccc85a4579515bf11cc94e3876fb69853d03cf2109c87ad6d5d308b166d8bbf0

See more details on using hashes here.

Provenance

File details

Details for the file dbt_af-0.5.3-py3-none-any.whl.

File metadata

  • Download URL: dbt_af-0.5.3-py3-none-any.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for dbt_af-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5852bf77b254b911e0064a60052b0b71f2dfc721e75e6d049acac328f8957053
MD5 8b4cfc99df1f5091f1be6321319a7137
BLAKE2b-256 7e143c1027191bbd52c258d50abdeea04ea8305d981cc74eea8e84674538c57c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page