Skip to main content

Simplest way to run dbt python models.

Project description

Welcome to dbt-fal 👋

dbt-fal adapter is the ✨easiest✨ way to run your dbt Python models.

Starting with dbt v1.3, you can now build your dbt models in Python. This leads to some cool use cases that was once difficult to build with SQL alone. Some examples are:

  • Using Python stats libraries to calculate stats
  • Building forecasts
  • Building other predictive models such as classification and clustering

This is fantastic! BUT, there is still one issue though! The developer experience with Snowflake and Bigquery is not great, and there is no Python support for Redshift and Postgres.

dbt-fal provides the best environment to run your Python models that works with all other data warehouses! With dbt-fal, you can:

  • Build and test your models locally
  • Isolate each model to run in its own environment with its own dependencies
  • [Coming Soon] Run your Python models in the ☁️ cloud ☁️ with elasticly scaling Python environments.
  • [Coming Soon] Even add GPUs to your models for some heavier workloads such as training ML models.

Getting Started

1. Install dbt-fal

pip install dbt-fal[bigquery, snowflake] Add your current warehouse here

2. Update your profiles.yml and add the fal adapter

jaffle_shop:
  target: dev_with_fal
  outputs:
    dev_with_fal:
      type: fal
      db_profile: dev_bigquery # This points to your main adapter
    dev_bigquery:
      type: bigquery
      ...

Don't forget to point to your main adapter with the db_profile attribute. This is how the fal adapter knows how to connect to your data warehouse.

3. dbt run!

That is it! It is really that simple 😊

4. [🚨 Cool Feature Alert 🚨] Environment management with dbt-fal

If you want some help with environment management (vs sticking to the default env that the dbt process runs in), you can create a fal_project.yml in the same folder as your dbt project and have “named environments”:

In your dbt project folder:

$ touch fal_project.yml

# Paste the config below
environments:
  - name: ml
    type: venv
    requirements:
      - prophet

and then in your dbt model:

$ vi models/orders_forecast.py

def model(dbt, fal):
    dbt.config(fal_environment="ml") # Add this line

    df: pd.DataFrame = dbt.ref("orders_daily")

The dbt.config(fal_environment=“ml”) will give you an isolated clean env to run things in, so you dont pollute your package space.

5. [Coming Soon™️] Move your compute to the Cloud!

Let us know if you are interested in this. We are looking for beta users.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt-fal-1.3.16.tar.gz (35.3 kB view details)

Uploaded Source

Built Distribution

dbt_fal-1.3.16-py3-none-any.whl (47.2 kB view details)

Uploaded Python 3

File details

Details for the file dbt-fal-1.3.16.tar.gz.

File metadata

  • Download URL: dbt-fal-1.3.16.tar.gz
  • Upload date:
  • Size: 35.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.16 Linux/5.15.0-1034-azure

File hashes

Hashes for dbt-fal-1.3.16.tar.gz
Algorithm Hash digest
SHA256 6939c71bcb8f221450f9e0ceb025ad3eecc14103f140ea6c906e8c62d6173938
MD5 9af442df9ae0055088071241e17b8a0b
BLAKE2b-256 11297a1e4379e74d2443fddb98d43e9ae7e7c28da7f00a024bed172da3680afc

See more details on using hashes here.

File details

Details for the file dbt_fal-1.3.16-py3-none-any.whl.

File metadata

  • Download URL: dbt_fal-1.3.16-py3-none-any.whl
  • Upload date:
  • Size: 47.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.16 Linux/5.15.0-1034-azure

File hashes

Hashes for dbt_fal-1.3.16-py3-none-any.whl
Algorithm Hash digest
SHA256 6aa50bc33dda8cfa7f7c6ff0622aace00d272e8f4a37b186ad8e4f8d5a26d5f8
MD5 05ba936433a66e3903a83aa18a36745d
BLAKE2b-256 a55cc30f65b9b17f711b750a56eb6a57d9fe7988968a37cbd9bd589deee9447a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page