Skip to main content

Simplest way to run dbt python models.

Project description

Welcome to dbt-fal 👋

dbt-fal adapter is the ✨easiest✨ way to run your dbt Python models.

Starting with dbt v1.3, you can now build your dbt models in Python. This leads to some cool use cases that was once difficult to build with SQL alone. Some examples are:

  • Using Python stats libraries to calculate stats
  • Building forecasts
  • Building other predictive models such as classification and clustering

This is fantastic! BUT, there is still one issue though! The developer experience with Snowflake and Bigquery is not great, and there is no Python support for Redshift and Postgres.

dbt-fal provides the best environment to run your Python models that works with all other data warehouses! With dbt-fal, you can:

  • Build and test your models locally
  • Isolate each model to run in its own environment with its own dependencies
  • [Coming Soon] Run your Python models in the ☁️ cloud ☁️ with elasticly scaling Python environments.
  • [Coming Soon] Even add GPUs to your models for some heavier workloads such as training ML models.

Getting Started

1. Install dbt-fal

pip install dbt-fal[bigquery, snowflake] Add your current warehouse here

2. Update your profiles.yml and add the fal adapter

jaffle_shop:
  target: dev_with_fal
  outputs:
    dev_with_fal:
      type: fal
      db_profile: dev_bigquery # This points to your main adapter
    dev_bigquery:
      type: bigquery
      ...

Don't forget to point to your main adapter with the db_profile attribute. This is how the fal adapter knows how to connect to your data warehouse.

3. dbt run!

That is it! It is really that simple 😊

4. [🚨 Cool Feature Alert 🚨] Environment management with dbt-fal

If you want some help with environment management (vs sticking to the default env that the dbt process runs in), you can create a fal_project.yml in the same folder as your dbt project and have “named environments”:

In your dbt project folder:

$ touch fal_project.yml

# Paste the config below
environments:
  - name: ml
    type: venv
    requirements:
      - prophet

and then in your dbt model:

$ vi models/orders_forecast.py

def model(dbt, fal):
    dbt.config(fal_environment="ml") # Add this line

    df: pd.DataFrame = dbt.ref("orders_daily")

The dbt.config(fal_environment=“ml”) will give you an isolated clean env to run things in, so you dont pollute your package space.

5. [Coming Soon™️] Move your compute to the Cloud!

Let us know if you are interested in this. We are looking for beta users.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt-fal-1.3.2.tar.gz (31.6 kB view details)

Uploaded Source

Built Distribution

dbt_fal-1.3.2-py3-none-any.whl (42.8 kB view details)

Uploaded Python 3

File details

Details for the file dbt-fal-1.3.2.tar.gz.

File metadata

  • Download URL: dbt-fal-1.3.2.tar.gz
  • Upload date:
  • Size: 31.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.14 Linux/5.15.0-1022-azure

File hashes

Hashes for dbt-fal-1.3.2.tar.gz
Algorithm Hash digest
SHA256 1f0f8dc6498fe8143f688e4d7668cbd43dd78315253e4a4da3178de4359c9e94
MD5 00ca2939cdf0b3d2413a5a6b5c00b02e
BLAKE2b-256 cb19913354da6483dee10b54c8939dfe6bf5b8a8b9af113f4c05b2cda946d0e3

See more details on using hashes here.

File details

Details for the file dbt_fal-1.3.2-py3-none-any.whl.

File metadata

  • Download URL: dbt_fal-1.3.2-py3-none-any.whl
  • Upload date:
  • Size: 42.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.14 Linux/5.15.0-1022-azure

File hashes

Hashes for dbt_fal-1.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 731adcc2c56588e1c27ca7b90b9a475fd03982a08bc2c47f206402e2d0c9e32d
MD5 7d923e224ebd1e06173c49211ddc7bd4
BLAKE2b-256 7c96a11995b828847ff7abb118cb0b096c26612cf186c73ff6992dd89462bcc2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page