Skip to main content

Simplest way to run dbt python models.

Project description

Welcome to dbt-fal 👋

dbt-fal adapter is the ✨easiest✨ way to run your dbt Python models.

Starting with dbt v1.3, you can now build your dbt models in Python. This leads to some cool use cases that was once difficult to build with SQL alone. Some examples are:

  • Using Python stats libraries to calculate stats
  • Building forecasts
  • Building other predictive models such as classification and clustering

This is fantastic! BUT, there is still one issue though! The developer experience with Snowflake and Bigquery is not great, and there is no Python support for Redshift and Postgres.

dbt-fal provides the best environment to run your Python models that works with all other data warehouses! With dbt-fal, you can:

  • Build and test your models locally
  • Isolate each model to run in its own environment with its own dependencies
  • [Coming Soon] Run your Python models in the ☁️ cloud ☁️ with elasticly scaling Python environments.
  • [Coming Soon] Even add GPUs to your models for some heavier workloads such as training ML models.

Getting Started

1. Install dbt-fal

pip install dbt-fal[bigquery, snowflake] Add your current warehouse here

2. Update your profiles.yml and add the fal adapter

jaffle_shop:
  target: dev_with_fal
  outputs:
    dev_with_fal:
      type: fal
      db_profile: dev_bigquery # This points to your main adapter
    dev_bigquery:
      type: bigquery
      ...

Don't forget to point to your main adapter with the db_profile attribute. This is how the fal adapter knows how to connect to your data warehouse.

3. dbt run!

That is it! It is really that simple 😊

4. [🚨 Cool Feature Alert 🚨] Environment management with dbt-fal

If you want some help with environment management (vs sticking to the default env that the dbt process runs in), you can create a fal_project.yml in the same folder as your dbt project and have “named environments”:

In your dbt project folder:

$ touch fal_project.yml

# Paste the config below
environments:
  - name: ml
    type: venv
    requirements:
      - prophet

and then in your dbt model:

$ vi models/orders_forecast.py

def model(dbt, fal):
    dbt.config(fal_environment="ml") # Add this line

    df: pd.DataFrame = dbt.ref("orders_daily")

The dbt.config(fal_environment=“ml”) will give you an isolated clean env to run things in, so you dont pollute your package space.

5. [Coming Soon™️] Move your compute to the Cloud!

Let us know if you are interested in this. We are looking for beta users.

Have feedback or need help?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt-fal-1.4.6.tar.gz (36.8 kB view details)

Uploaded Source

Built Distribution

dbt_fal-1.4.6-py3-none-any.whl (49.1 kB view details)

Uploaded Python 3

File details

Details for the file dbt-fal-1.4.6.tar.gz.

File metadata

  • Download URL: dbt-fal-1.4.6.tar.gz
  • Upload date:
  • Size: 36.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.16 Linux/5.15.0-1035-azure

File hashes

Hashes for dbt-fal-1.4.6.tar.gz
Algorithm Hash digest
SHA256 49e47d86432ad07ee147a8b1c77b6f63c29c25112ae14e1b0834f02cc349c4a9
MD5 1e0e85b9d17a6adab4fc57b84b0ea44e
BLAKE2b-256 c0b45a8e283701a2388dbd48559bd18595dbda4e14198dffa0d95877408b8e0f

See more details on using hashes here.

File details

Details for the file dbt_fal-1.4.6-py3-none-any.whl.

File metadata

  • Download URL: dbt_fal-1.4.6-py3-none-any.whl
  • Upload date:
  • Size: 49.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.8.16 Linux/5.15.0-1035-azure

File hashes

Hashes for dbt_fal-1.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c53f9bbdec586ae76592eb0e8e7436f2079e608abe95070a252f246e3271d35a
MD5 9869c9e2542d5acc49b1b8d1369132e2
BLAKE2b-256 95f5628e3e6c925dd4163a2576ac215bf19b718bf662035e666d30c714d398d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page