Skip to main content

Simplest way to run dbt python models.

Project description

Welcome to dbt-fal 👋

dbt-fal adapter is the ✨easiest✨ way to run your dbt Python models.

Starting with dbt v1.3, you can now build your dbt models in Python. This leads to some cool use cases that was once difficult to build with SQL alone. Some examples are:

  • Using Python stats libraries to calculate stats
  • Building forecasts
  • Building other predictive models such as classification and clustering

This is fantastic! BUT, there is still one issue though! The developer experience with Snowflake and Bigquery is not great, and there is no Python support for Redshift and Postgres.

dbt-fal provides the best environment to run your Python models that works with all other data warehouses! With dbt-fal, you can:

  • Build and test your models locally
  • Isolate each model to run in its own environment with its own dependencies
  • [Coming Soon] Run your Python models in the ☁️ cloud ☁️ with elasticly scaling Python environments.
  • [Coming Soon] Even add GPUs to your models for some heavier workloads such as training ML models.

Getting Started

1. Install dbt-fal

pip install dbt-fal[bigquery, snowflake] Add your current warehouse here

2. Update your profiles.yml and add the fal adapter

jaffle_shop:
  target: dev_with_fal
  outputs:
    dev_with_fal:
      type: fal
      db_profile: dev_bigquery # This points to your main adapter
    dev_bigquery:
      type: bigquery
      ...

Don't forget to point to your main adapter with the db_profile attribute. This is how the fal adapter knows how to connect to your data warehouse.

3. dbt run!

That is it! It is really that simple 😊

4. [🚨 Cool Feature Alert 🚨] Environment management with dbt-fal

If you want some help with environment management (vs sticking to the default env that the dbt process runs in), you can create a fal_project.yml in the same folder as your dbt project and have “named environments”:

In your dbt project folder:

$ touch fal_project.yml

# Paste the config below
environments:
  - name: ml
    type: venv
    requirements:
      - prophet

and then in your dbt model:

$ vi models/orders_forecast.py

def model(dbt, fal):
    dbt.config(fal_environment="ml") # Add this line

    df: pd.DataFrame = dbt.ref("orders_daily")

The dbt.config(fal_environment=“ml”) will give you an isolated clean env to run things in, so you dont pollute your package space.

5. [Coming Soon™️] Move your compute to the Cloud!

Let us know if you are interested in this. We are looking for beta users.

Have feedback or need help?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt_fal-1.5.1.tar.gz (36.6 kB view details)

Uploaded Source

Built Distribution

dbt_fal-1.5.1-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file dbt_fal-1.5.1.tar.gz.

File metadata

  • Download URL: dbt_fal-1.5.1.tar.gz
  • Upload date:
  • Size: 36.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1037-azure

File hashes

Hashes for dbt_fal-1.5.1.tar.gz
Algorithm Hash digest
SHA256 c326ede86f476194597af28c90583fd4a17eb6b0f978ddb65fe8223e168ac92c
MD5 59634f4a33c08aa3d85fe9c302b6f229
BLAKE2b-256 0b53fba99f0871450d5df3e5c158f2c5a6c41e96476c34cc3d75423fcc258532

See more details on using hashes here.

File details

Details for the file dbt_fal-1.5.1-py3-none-any.whl.

File metadata

  • Download URL: dbt_fal-1.5.1-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1037-azure

File hashes

Hashes for dbt_fal-1.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7656b3b9429c90234c4e2e2bce0ea4652e0ecf10e388816e230132d048814aaf
MD5 1d846c497dfe883b067871cadac4160f
BLAKE2b-256 ed39555f95ab1022b8e539d1caddb392004c75c38ddd912cdc407359d70d9ed0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page