Skip to main content

The Starrocks adapter plugin for dbt

Project description

dbt-starrocks

PyPI PyPI - Python Version PyPI - Downloads

This project is under development.

The dbt-starrocks package contains all the code to enable dbt to work with StarRocks.

This is an experimental plugin:

  • We have not tested it extensively
  • Requires StarRocks version 2.5.0 or higher
    • version 3.1.x is recommended
    • StarRocks versions 2.4 and below are no longer supported

Installation

This plugin can be installed via pip:

$ pip install dbt-starrocks

Supported features

Starrocks <= 2.5 Starrocks 2.5 ~ 3.1 Starrocks >= 3.1 Feature
Table materialization
View materialization
Materialized View materialization
Incremental materialization
Primary Key Model
Sources
Custom data tests
Docs generate
Expression Partition
Kafka

Notice

  1. When StarRocks Version < 2.5, Create table as can only set engine='OLAP' and table_type='DUPLICATE'
  2. When StarRocks Version >= 2.5, Create table as supports table_type='PRIMARY'
  3. When StarRocks Version < 3.1 distributed_by is required

Profile Configuration

Example entry for profiles.yml:

starrocks:
  target: dev
  outputs:
    dev:
      type: starrocks
      host: localhost
      port: 9030
      schema: analytics
      username: your_starrocks_username
      password: your_starrocks_password
Option Description Required? Example
type The specific adapter to use Required starrocks
host The hostname to connect to Required 192.168.100.28
port The port to use Required 9030
schema Specify the schema (database) to build models into Required analytics
username The username to use to connect to the server Required dbt_admin
password The password to use for authenticating to the server Required correct-horse-battery-staple
version Let Plugin try to go to a compatible starrocks version Optional 3.1.0
use_pure set to "true" to use C extensions Optional true

More details about setting use_pure and other connection arguments here

Example

dbt seed properties(yml):

Complete configuration:

models:
  materialized: table                   // table or view or materialized_view
  engine: 'OLAP'
  keys: ['id', 'name', 'some_date']
  table_type: 'PRIMARY'                 // PRIMARY or DUPLICATE or UNIQUE
  distributed_by: ['id']
  buckets: 3                            // leave empty for auto bucketing
  indexs=[{ 'columns': 'idx_column' }]  
  partition_by: ['some_date']
  partition_by_init: ["PARTITION p1 VALUES [('1971-01-01 00:00:00'), ('1991-01-01 00:00:00')),PARTITION p1972 VALUES [('1991-01-01 00:00:00'), ('1999-01-01 00:00:00'))"]
  // RANGE, LIST, or Expr partition types should be used in conjunction with partition_by configuration
  // Expr partition type requires an expression (e.g., date_trunc) specified in partition_by
  order_by: ['some_column']             // only for PRIMARY table_type
  partition_type: 'RANGE'               // RANGE or LIST or Expr Need to be used in combination with partition_by configuration
  properties: [{"replication_num":"1", "in_memory": "true"}]
  refresh_method: 'async'               // only for materialized view default manual

dbt run config:

Example configuration:

{{ config(materialized='view') }}
{{ config(materialized='table', engine='OLAP', buckets=32, distributed_by=['id']) }}
{{ config(materialized='table', indexs=[{ 'columns': 'idx_column' }]) }}
{{ config(materialized='table', partition_by=['date_trunc("day", first_order)'], partition_type='Expr') }}
{{ config(materialized='table', table_type='PRIMARY', keys=['customer_id'], order_by=['first_name', 'last_name'] }}
{{ config(materialized='incremental', table_type='PRIMARY', engine='OLAP', buckets=32, distributed_by=['id']) }}
{{ config(materialized='materialized_view') }}
{{ config(materialized='materialized_view', properties={"storage_medium":"SSD"}) }}
{{ config(materialized='materialized_view', refresh_method="ASYNC START('2022-09-01 10:00:00') EVERY (interval 1 day)") }}

For materialized view only support partition_by、buckets、distributed_by、properties、refresh_method configuration.

Read From Catalog

First you need to add this catalog to starrocks. The following is an example of hive.

CREATE EXTERNAL CATALOG `hive_catalog`
PROPERTIES (
    "hive.metastore.uris"  =  "thrift://127.0.0.1:8087",
    "type"="hive"
);

How to add other types of catalogs can be found in the documentation. https://docs.starrocks.io/en-us/latest/data_source/catalog/catalog_overview Then write the sources.yaml file.

sources:
  - name: external_example
    schema: hive_catalog.hive_db
    tables:
      - name: hive_table_name

Finally, you might use below marco quote

{{ source('external_example', 'hive_table_name') }}

Test Adapter

Run the following

python3 -m pytest tests/functional

consult the project

Contributing

We welcome you to contribute to dbt-starrocks. Please see the Contributing Guide for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbt_starrocks-1.6.3.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

dbt_starrocks-1.6.3-py3-none-any.whl (30.1 kB view details)

Uploaded Python 3

File details

Details for the file dbt_starrocks-1.6.3.tar.gz.

File metadata

  • Download URL: dbt_starrocks-1.6.3.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for dbt_starrocks-1.6.3.tar.gz
Algorithm Hash digest
SHA256 bcadcb70ac20b754cfc3aa14215482249f2077466d8250e79dfba1f817a66ca1
MD5 e18117b9d32fa837d91c5b073e2c9feb
BLAKE2b-256 774684840ff67a2fe0fa8fc5c09de2f5a56afad9b864bac489afd76e195df509

See more details on using hashes here.

File details

Details for the file dbt_starrocks-1.6.3-py3-none-any.whl.

File metadata

File hashes

Hashes for dbt_starrocks-1.6.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1468f8de94fa9613c5d58d5cd90a61873d1bfd1665caad6c6257d7b57286766a
MD5 400d3cd650031916e28531aab06bb116
BLAKE2b-256 44a0d0888f7fad99ce190aaf18fe0c07bb66b32b22d07af57cb9b3257b50d751

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page