CLI tool for dbt users adopting analytics engineering best practices.
Project description
dbt-coves
What is dbt-coves?
dbt-coves is a CLI tool that automates certain tasks for dbt making life simpler for the dbt user.
dbt-coves generates dbt soruces and staging models and property(yml) files by analyzing information from the data warehouse and creating the necessary files (sql and yml).
Finally, dbt-coves includes functionality to bootstrap a dbt project and to extract and load configurations from Airbyte.
Supported dbt versions
Version | Status |
---|---|
< 1.0 | ❌ Not supported |
>= 1.0 | ✅ Tested |
Supported adapters
Feature | Snowflake | Redshift |
---|---|---|
dbt project setup | ✅ Tested | 🕥 In progress |
source model (sql) generation | ✅ Tested | 🕥 In progress |
model properties (yml) generation | ✅ Tested | 🕥 In progress |
NOTE: Other database adapters may work, we have just not tested them. Feed free to try them and let us know if you test them we can update the table above.
Here's the tool in action
Installation
pip install dbt-coves
We recommend using python virtualenvs and create one separate environment per project.
Command Reference
For a complete list of options, please run:
dbt-coves -h
dbt-coves <command> -h
Environment setup
Setting up your environment can be done in two different ways:
Runs a set of scripts in your local environment to configure your project components: ssh keys
, git
and dbt
dbt-coves setup all
You can configure individual components:
Set up git
repository of dbt-coves project
dbt-coves setup git
Setup dbt
within the project (delegates to dbt init)
dbt-coves setup dbt
Set up SSH Keys for dbt project. Supports the argument --open_ssl_public_key
which generates an extra Public Key in Open SSL format, useful for configuring certain providers (i.e. Snowflake authentication)
dbt-coves setup ssh
Models generation
dbt-coves generate <resource>
Where <resource> could be sources or properties.
dbt-coves generate sources
This command will generate the dbt source configuration as well as the initial dbt staging model(s). It will look in the database defined in your profiles.yml
file or you can pass the --database
argument or set up default configuration options (see below)
dbt-coves generate sources --database raw
Supports Jinja templates to adjust how the resources are generated. See below for examples.
Source Generation Arguments
dbt-coves can be used to create the initial staging models. It will do the following:
- Create / Update the source yml file
- Create the initial staging model(sql) file and offer to flatten VARIANT(JSON) fields
- Create the staging model's property(yml) file.
dbt-coves generate sources
supports the following args:
See full list in help
dbt-coves generate sources -h
--database
# Database to inspect
--schema
# Schema to inspect
--sources-destination
# Where sources yml files will be generated, default: 'models/staging/{{schema}}/sources.yml'
--sources-destination
# Where sources yml files will be generated, default: 'models/staging/{{schema}}/{{schema}}.yml'
--models-destination
# Where models sql files will be generated, default: 'models/staging/{{schema}}/{{relation}}.sql'
--model-props-destination
# Where models yml files will be generated, default: 'models/staging/{{schema}}/{{relation}}.yml'
--update-strategy
# Action to perform when a property file already exists: 'update', 'recreate', 'fail', 'ask' (per file)
Properties Generation Arguments
You can use dbt-coves to generate and update the properties(yml) file for a given dbt model(sql) file.
dbt-coves generate properties
supports the following args:
--destination
# Where models yml files will be generated, default: '{{model_folder_path}}/{{model_file_name}}.yml'
--update-strategy
# Action to perform when a property file already exists: 'update', 'recreate', 'fail', 'ask' (per file)
-s --select
# Filter model(s) to generate property file(s)
--exclude
# Filter model(s) to exclude from property file(s) generation
--selector
# Specify dbt selector for more complex model filtering
Note: --select (or -s)
, --exclude
and --selector
work exactly as dbt ls
selectors do. For usage details, visit dbt list docs
Metadata
dbt-coves supports the argument --metadata
which allows users to specify a csv file containing field types and descriptions to be used when creating the staging models and property files.
dbt-coves generate sources --metadata metadata.csv
Metadata format: You can download a sample csv file as reference
database | schema | relation | column | key | type | description |
---|---|---|---|---|---|---|
raw | raw | _airbyte_raw_country_populations | _airbyte_data | Year | integer | Year of country population measurement |
raw | raw | _airbyte_raw_country_populations | _airbyte_data | variant | Airbyte data columns (VARIANT) in Snowflake | |
raw | raw | _airbyte_raw_country_populations | _airbyte_ab_id | varchar | Airbyte unique identifier used during data load |
Extract configuration from Airbyte
dbt-coves extract airbyte
Extracts the configuration from your Airbyte sources, connections and destinations (excluding credentials) and stores it in the specified folder. The main goal of this feature is to keep track of the configuration changes in your git repo, and rollback to a specific version when needed.
Full usage example:
dbt-coves extract airbyte --host http://airbyte-server --port 8001 --path /config/workspace/load
Load configuration to Airbyte
dbt-coves load airbyte
Loads the Airbyte configuration generated with dbt-coves extract airbyte
on an Airbyte server. Secrets folder needs to be specified separately. You can use git-secret to encrypt secrets and make them part of your git repo.
Loading secrets
Secret credentials can be approached in two different ways: locally or remotely (through a provider/manager).
In order to load encrypted fields locally:
dbt-coves load airbyte --secrets-path /path/to/secret/directory
# This directory must have 'sources', 'destinations' and 'connections' folders nested inside, and inside them the respective JSON files with unencrypted fields.
# Naming convention: JSON unencrypted secret files must be named exactly as the extracted ones.
To load encrypted fields through a manager (in this case we are connecting to Datacoves' Service Credentials):
--secrets-manager datacoves
--secrets-url https://api.datacoves.localhost/service-credentials/airbyte
--secrets-token <secret token>
Full usage example:
dbt-coves load airbyte --host http://airbyte-server --port 8001 --path /config/workspace/load --secrets-path /config/workspace/secrets
Run dbt commands
dbt-coves dbt <arguments> -- <command>
Run dbt commands on special environments such as Airflow, or CI workers, with the possibility of changing dbt project location and activating a specific virtual environment in which running commands.
Arguments
dbt-coves dbt
supports the following arguments
--project-dir
# Path of the dbt project where command will be executed, i.e.: /opt/user/dbt_project
--virtualenv
# Virtual environment path. i.e.: /opt/user/virtualenvs/airflow
Sample usage
dbt-coves dbt --project-dir /opt/user/dbt_project --virtualenv /opt/user/virtualenvs/airflow -- run -s model --vars \"{key: value}\"
# Make sure to escape special characters such as quotation marks
# Double dash (--) between <arguments> and <command> are mandatory
Settings
dbt-coves could optionally read settings from .dbt_coves.yml
or
.dbt_coves/config.yml
. A standard settings files could look like
this:
generate:
sources:
database: RAW # Database where to look for source tables
schemas: # List of schema names where to look for source tables
- RAW
sources_destination: "models/staging/{{schema}}/{{schema}}.yml" # Where sources yml files will be generated
models_destination: "models/staging/{{schema}}/{{relation}}.sql" # Where models sql files will be generated
model_props_destination: "models/staging/{{schema}}/{{relation}}.yml" # Where models yml files will be generated
update_strategy: ask # Action to perform when a property file already exists. Options: update, recreate, fail, ask (per file)
templates_folder: ".dbt_coves/templates" # Folder where source generation jinja templates are located. Override default templates creating source_props.yml, source_model_props.yml, and source_model.sql under this folder
properties:
destination: "{{model_folder_path}}/{{model_file_name}}.yml" # Where models yml files will be generated
# You can specify a different path by declaring it explicitly, i.e.: "models/staging/{{model_file_name}}.yml"
update-strategy: ask # Action to perform when a property file already exists. Options: update, recreate, fail, ask (per file)
select: "models/staging/bays" # Filter model(s) to generate property file(s)
exclude: "models/staging/bays/test_bay" # Filter model(s) to generate property file(s)
selector: "selectors/bay_selector.yml" # Specify dbt selector for more complex model filtering
extract:
airbyte:
path: /config/workspace/load # Where json files will be generated
host: http://airbyte-server # Airbyte's API hostname
port: 8001 # Airbyte's API port
dbt_list_args: --exclude source:dbt_artifacts # Extra dbt arguments: selectors, modifiers, etc
load:
airbyte:
path: /config/workspace/load
host: http://airbyte-server
port: 8001
dbt_list_args: --exclude source:dbt_artifacts
secrets_path: /config/workspace/secrets # Secret files location for Airbyte configuration
secrets_manager: datacoves # Secret credentials provider (secrets_path OR secrets_manager should be used, can't load secrets locally and remotely at the same time)
secrets_url: https://api.datacoves.localhost/service-credentials/airbyte # Secret credentials provider url
secrets_token: AbCdEf123456 # Secret credentials provider token
Override source generation templates
Customizing generated models and model properties requires placing
template files under the .dbt-coves/templates
folder as follows:
source_props.yml
This file is used to create the sources yml file
version: 2
sources:
- name: {{ relation.schema.lower() }}
{%- if source_database %}
database: {{ source_database }}
{%- endif %}
tables:
- name: {{ relation.name.lower() }}
source_model.sql
This file is used to create the staging model(sql) file
with raw_source as (
select
parse_json(replace(_airbyte_data::string,'"NaN"', 'null')) as airbyte_data_clean,
*
from {% raw %}{{{% endraw %} source('{{ relation.schema.lower() }}', '{{ relation.name.lower() }}') {% raw %}}}{% endraw %}
),
final as (
select
{%- if adapter_name == 'SnowflakeAdapter' %}
{%- for key, cols in nested.items() %}
{%- for col in cols %}
{{ key if key != '_airbyte_data' else 'airbyte_data_clean' }}:{{ '"' + col + '"' }}::varchar as {{ col.lower().replace(" ","_").replace(":","_").replace("(","_").replace(")","_").replace("-","_").replace("/","_") }}{% if not loop.last or columns %},{% endif %}
{%- endfor %}
{%- endfor %}
{%- elif adapter_name == 'BigQueryAdapter' %}
{%- for key, cols in nested.items() %}
{%- for col in cols %}
cast({{ key }}.{{ col }} as string) as {{ col.lower().replace(" ","_").replace(":","_").replace("(","_").replace(")","_") }}{% if not loop.last or columns %},{% endif %}
{%- endfor %}
{%- endfor %}
{%- elif adapter_name == 'RedshiftAdapter' %}
{%- for key, cols in nested.items() %}
{%- for col in cols %}
{{ key }}.{{ col }}::varchar as {{ col.lower().replace(" ","_").replace(":","_").replace("(","_").replace(")","_") }}{% if not loop.last or columns %},{% endif %}
{%- endfor %}
{%- endfor %}
{%- endif %}
{%- for col in columns %}
{{ '"' + col.name + '"' }} as {{ col.name.lower() }}{% if not loop.last %},{% endif %}
{%- endfor %}
from raw_source
)
select * from final
source_model_props.yml
This file is used to create the staging properties(yml) file
version: 2
models:
- name: {{ model.lower() }}
columns:
{%- for cols in nested.values() %}
{%- for col in cols %}
- name: {{ col.lower().replace(" ","_").replace(":","_").replace("(","_").replace(")","_").replace("-","_").replace("/","_") }}
{%- endfor %}
{%- endfor %}
{%- for col in columns %}
- name: {{ col.name.lower() }}
{%- endfor %}
model_props.yml
This file is used to create the properties(yml) files for non-staging models
version: 2
models:
- name: {{ model.lower() }}
columns:
{%- for col in columns %}
- name: {{ col['id'] }}
{%- if col['description'] %}
description: "{{ col['description'] }}"
{%- endif %}
{%- endfor %}
Thanks
The project main structure was inspired by dbt-sugar. Special thanks to Bastien Boutonnet for the great work done.
Authors
- Sebastian Sassi @sebasuy -- Datacoves
- Noel Gomez @noel_g -- Datacoves
- Bruno Antonellini -- Datacoves
About
Learn more about Datacoves.
⚠️ dbt-coves is still in development, make sure to test it for your dbt project version and DW before using in production and please submit any issues you find. We also welcome any contributions from the community
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dbt_coves-1.1.1a22.tar.gz
.
File metadata
- Download URL: dbt_coves-1.1.1a22.tar.gz
- Upload date:
- Size: 48.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.8.14 Linux/5.15.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2eafd3e13405a2ec08f621dffbfd54db9fcde99668fff450ed2700c7927d187 |
|
MD5 | b659d8fe55729bdb2735a609c01797ed |
|
BLAKE2b-256 | 0ebce5ecd0a3788b35783c9921e0b20fcc5a5e80bc992d26bf12b9db9c58141a |
File details
Details for the file dbt_coves-1.1.1a22-py3-none-any.whl
.
File metadata
- Download URL: dbt_coves-1.1.1a22-py3-none-any.whl
- Upload date:
- Size: 55.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.2 CPython/3.8.14 Linux/5.15.0-1022-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8c571fcaf72a002e7c7bb11f4a23078bf12e40a15637100a874cd12ce3edf4d |
|
MD5 | 9ef35a2351f89068aba182945ba566c8 |
|
BLAKE2b-256 | 16e09eeb151717aff5bcaae38760589d759ef548c5808c99210c2da8c6df1ab3 |