Skip to main content

An unaffiliated python wrapper for dbt Cloud APIs

Project description

An unaffiliated python interface for dbt Cloud APIs

Coverage Package version Downloads


Documentation: https://dbtc.dpguthrie.com

Interactive Demo: https://dpguthrie-dbtc-streamlit-home-yy7c0b.streamlit.app/

Source Code: https://github.com/dpguthrie/dbtc

V2 Docs: https://docs.getdbt.com/dbt-cloud/api-v2

V3 Docs: https://docs.getdbt.com/dbt-cloud/api-v3


Overview

dbtc is an unaffiliated python interface to various dbt Cloud API endpoints.

This library acts as a convenient interface to two different APIs that dbt Cloud offers:

  • Cloud API: This is a REST API that exposes endpoints that allow users to programatically create, read, update, and delete resources within their dbt Cloud Account.
  • Metadata API: This is a GraphQL API that exposes metadata generated from a job run within dbt Cloud.

Requirements

Python 3.7+

  • Requests - The elegant and simple HTTP library for Python, built for human beings.
  • sgqlc - Simple GraphQL Client
  • Typer - Library for building CLI applications

Installation

pip install dbtc

Basic Usage

Python

The interface to both APIs are located in the dbtCloudClient class.

The example below shows how you use the cloud property on an instance of the dbtCloudClient class to to access a method, trigger_job_from_failure, that allows you to restart a job from its last point of failure.

from dbtc import dbtCloudClient

# Assumes that DBT_CLOUD_SERVICE_TOKEN env var is set
client = dbtCloudClient()

account_id = 1
job_id = 1
payload = {'cause': 'Restarting from failure'}

run = client.cloud.trigger_job_from_failure(
    account_id,
    job_id,
    payload,
    should_poll=False,
)

# This returns a dictionary containing two keys
run['data']
run['status']

Similarly, use the metadata property to retrieve information from the Discovery API. Here's how you could retrieve all of the metrics for your project.

from dbtc import dbtCloudClient

client = dbtCloudClient()
query = '''
query ($environmentId: BigInt!, $first: Int!) {
  environment(id: $environmentId) {
    definition {
      metrics(first: $first) {
        edges {
          node {
            name
            description
            type
            formula
            filter
            tags
            parents {
              name
              resourceType
            }
          }
        }
      }
    }
  }
}
'''
variables = {'environmentId': 1, 'first': 500}
data = client.metadata.query(query, variables)

# Data will be in the edges key, which will be a list of nodes
nodes = data['data']['definition']['metrics']['edges']
for node in nodes:
    # node is a dictionary
    node_name = node['name']
    ...

If you're unfamiliar either with the Schema to query or even how to write a GraphQL query, I highly recommend going to the dbt Cloud Discovery API playground. You'll be able to interactively explore the Schema while watching it write a GraphQL query for you!

CLI

The CLI example below will map to the python cloud example above:

dbtc trigger-job-from-failure \
    --account-id 1 \
    --job-id 1 \
    --payload '{"cause": "Restarting from failure"}' \
    --no-should-poll

Similarly, for the metadata example above (assuming that you've put both the query and variables argument into variables):

dbtc query --query $query --variables $variables

If not setting your service token as an environment variable, do the following:

dbtc --token this_is_my_token query --query $query --variables $variables

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbtc-0.10.0.tar.gz (25.6 kB view details)

Uploaded Source

Built Distribution

dbtc-0.10.0-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file dbtc-0.10.0.tar.gz.

File metadata

  • Download URL: dbtc-0.10.0.tar.gz
  • Upload date:
  • Size: 25.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1019-azure

File hashes

Hashes for dbtc-0.10.0.tar.gz
Algorithm Hash digest
SHA256 7e2add5922a46832d14c0d4c657cf78896d680cc7edf55da6896c9285d729846
MD5 98e5bd016c12bb3f60be951368b3c6d1
BLAKE2b-256 0ebb29a922ae2e4674c51723793c3f31256005180ea965157d499bf8fb19bb4a

See more details on using hashes here.

File details

Details for the file dbtc-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: dbtc-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.1 Linux/6.2.0-1019-azure

File hashes

Hashes for dbtc-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 01351c953cd3f0590213c118ffeaddccfbbbd172ac822cd72e74497dc3c880fd
MD5 9be87f7208ecafc94f073fd65a49d298
BLAKE2b-256 58878261e13bfd50caa36db2c117e622038d685f63c4e686bf152b7c2d82607a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page