Skip to main content

No project description provided

Project description

Dataclasses Avro Schema CLI

Command line interface from dataclasses-avroschema to work with avsc resources

Tests GitHub license codecov python version

Requirements

python 3.8+

Documentation

https://marcosschroh.github.io/dc-avro/

Usage

You can validate one avro schema either from a local file or url:

Assuming that we have a local file schema.avsc that contains an avro schema, we can check whether it is valid

dc-avro validate-schema --path schema.avsc

Valid schema!! 👍 

{
    'type': 'record',
    'name': 'UserAdvance',
    'fields': [
        {'name': 'name', 'type': 'string'},
        {'name': 'age', 'type': 'long'},
        {'name': 'pets', 'type': {'type': 'array', 'items': 'string', 'name': 'pet'}},
        {'name': 'accounts', 'type': {'type': 'map', 'values': 'long', 'name': 'account'}},
        {'name': 'favorite_colors', 'type': {'type': 'enum', 'name': 'FavoriteColor', 'symbols': ['BLUE', 'YELLOW', 'GREEN']}},
        {'name': 'has_car', 'type': 'boolean', 'default': False},
        {'name': 'country', 'type': 'string', 'default': 'Argentina'},
        {'name': 'address', 'type': ['null', 'string'], 'default': None},
        {'name': 'md5', 'type': {'type': 'fixed', 'name': 'md5', 'size': 16}}
    ]
}

You can validate several .avsc files with lint command

dc-avro lint tests/schemas/example.avsc tests/schemas/example_v2.avsc

👍 Total valid schemas: 2
tests/schemas/example.avsc
tests/schemas/example_v2.avsc

To see all the commands execute dc-avro --help

Usage in pre-commit

Add the following lines to your .pre-commit-config.yaml file to enable avro schemas linting

  - repo: https://github.com/marcosschroh/dc-avro.git
    rev: 0.7.0
    hooks:
      - id: lint-avsc
        additional_dependencies: [typing_extensions]

Features

  • Validate schema
  • Lint schemas
  • Generate models from schemas
  • Data deserialization with schema
  • Data serialization with schema
  • View diff between schemas
  • Generate fake data from schema

Development

  1. Install requirements: poetry install
  2. Code linting: ./scripts/format
  3. Run tests: ./scripts/test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dc_avro-0.9.1.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

dc_avro-0.9.1-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file dc_avro-0.9.1.tar.gz.

File metadata

  • Download URL: dc_avro-0.9.1.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for dc_avro-0.9.1.tar.gz
Algorithm Hash digest
SHA256 d040f617523c119c66c2091dd22fc4b58cf7e3c276442e76265089ab50e52e8a
MD5 b5ee84a2e1d261eba9ace00cd256d1a9
BLAKE2b-256 21355eee5fa34b4b0112e64898707be87f0fa59ff9007640c0cc9d8da3b93c9a

See more details on using hashes here.

File details

Details for the file dc_avro-0.9.1-py3-none-any.whl.

File metadata

  • Download URL: dc_avro-0.9.1-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for dc_avro-0.9.1-py3-none-any.whl
Algorithm Hash digest
SHA256 827039e5c8ccc32f249399ab63e32006db540661b07f6a5664d9c4e230d10a1d
MD5 796588aec03f27158bee5ba6433ceb62
BLAKE2b-256 357b83b1f125e4e4d2fac43049d612fa0a0b08ab26c110af5b7477ca13547063

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page