Skip to main content

No project description provided

Project description

Dataclasses Avro Schema CLI

Command line interface from dataclasses-avroschema to work with avsc resources

Tests GitHub license codecov python version

Requirements

python 3.9+

Documentation

https://marcosschroh.github.io/dc-avro/

Usage

You can validate one avro schema either from a local file or url:

Assuming that we have a local file schema.avsc that contains an avro schema, we can check whether it is valid

dc-avro validate-schema --path schema.avsc

Valid schema!! 👍 

{
    'type': 'record',
    'name': 'UserAdvance',
    'fields': [
        {'name': 'name', 'type': 'string'},
        {'name': 'age', 'type': 'long'},
        {'name': 'pets', 'type': {'type': 'array', 'items': 'string', 'name': 'pet'}},
        {'name': 'accounts', 'type': {'type': 'map', 'values': 'long', 'name': 'account'}},
        {'name': 'favorite_colors', 'type': {'type': 'enum', 'name': 'FavoriteColor', 'symbols': ['BLUE', 'YELLOW', 'GREEN']}},
        {'name': 'has_car', 'type': 'boolean', 'default': False},
        {'name': 'country', 'type': 'string', 'default': 'Argentina'},
        {'name': 'address', 'type': ['null', 'string'], 'default': None},
        {'name': 'md5', 'type': {'type': 'fixed', 'name': 'md5', 'size': 16}}
    ]
}

You can validate several .avsc files with lint command

dc-avro lint tests/schemas/example.avsc tests/schemas/example_v2.avsc

👍 Total valid schemas: 2
tests/schemas/example.avsc
tests/schemas/example_v2.avsc

To see all the commands execute dc-avro --help

Usage in pre-commit

Add the following lines to your .pre-commit-config.yaml file to enable avro schemas linting

  - repo: https://github.com/marcosschroh/dc-avro.git
    rev: 0.7.0
    hooks:
      - id: lint-avsc
        additional_dependencies: [typing_extensions]

Features

  • Validate schema
  • Lint schemas
  • Generate models from schemas
  • Data deserialization with schema
  • Data serialization with schema
  • View diff between schemas
  • Generate fake data from schema

Development

  1. Install requirements: poetry install
  2. Code linting: ./scripts/format
  3. Run tests: ./scripts/test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dc_avro-0.9.3.tar.gz (5.5 kB view details)

Uploaded Source

Built Distribution

dc_avro-0.9.3-py3-none-any.whl (6.5 kB view details)

Uploaded Python 3

File details

Details for the file dc_avro-0.9.3.tar.gz.

File metadata

  • Download URL: dc_avro-0.9.3.tar.gz
  • Upload date:
  • Size: 5.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for dc_avro-0.9.3.tar.gz
Algorithm Hash digest
SHA256 0a482e284637b710974084cb809c80d7a9be8275a6a7bacde1184fb1dbbdd6c1
MD5 ec718e7d36cf898340e5fc405deb90f0
BLAKE2b-256 5792b4836bae867256cf190995915385206937591714ed6ac0a3a7786b3b19a8

See more details on using hashes here.

File details

Details for the file dc_avro-0.9.3-py3-none-any.whl.

File metadata

  • Download URL: dc_avro-0.9.3-py3-none-any.whl
  • Upload date:
  • Size: 6.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for dc_avro-0.9.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b0edda1466ba2f02313f7ecbc324b3ccddd52a19ad157fda21a555e6e71d9007
MD5 690c3781f245387de4ce4a5e1e084228
BLAKE2b-256 ae3086efbd60fa77bf9821906c82c702039501a533f1c66a55108f610bbd0370

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page