Skip to main content

coming soon

Project description

dcl_stats_n_plots

This repository is part of the DCLwidgets series. These repositories are dedicated to foster the joint development of tools and resources by the Defense Circuits Lab. The intended use of each tool may vary greatly from very lab- and/or analysis-specific problems, to tools and resources that may be of use also for other researchers. The common goal for each repository, however, is to provide the tool as an interactive, userfriendly, and intuitive GUI (usually based on ipywidgets, hence the name), such that the user needs little to no coding expertise.

List of all repositories of the DCLwidgets series:

  • dcl_stats_n_plots: A widget to compute statistics and plot the data with several options to customize the plot
  • DCL_to_NWB: A widget to convert datasets acquired in the DCL into the NWB file format
  • BSc_MS: A widget to annotate the corners of a maze within video files and save the corresponding x- and y-coordinates

About this widget

The purpose of this widget is to make everyday life in the lab a little easier, as it helps you to compute statistical tests and to create highly customizable plots that visualize your data. The widget also enables you to select exactly which statistical results you would like to annotate within the plots. This way, statistical analysis and visualization of your data is what it should be - simple & fast!

Please get in touch if you have any feedback, questions, or feature requests for us!


Installation

Using conda:

Although the dcl_stats_n_plots package itself is only available on PiPy, we yet recommend installation via conda - especially if you would like to use the GUI. Simply recreate the conda environment on your local machine by running the following command in your command line or terminal (e.g. Anaconda prompt). You can find the corresponding “environment.yml” file in the GitHub repo (here). Just make sure to place the file either in the current working directory (usually displayed at the beginning of each line in your terminal), or to provide the entire filepath (e.g. something like: “C:\Users\dsege\Downloads\environment.yml”):

With the “environment.yml” file in your current working directory:

conda env create -file environment.yml

With the “environment.yml” file in a different directory:

conda env create -file PATH\TO\THE\FILE\environment.yml

This will install all dependencies that are required to use dcl_stats_n_plost, including its GUI version.

Note

This installation was so far only tested on Linux (Ubuntu 20.04.4) using conda 22.9.0

Note

If you would like to contribute to the development of dcl_stats_n_plost you are more than welcome! On top of the regular user installation, you will, however, also need to install nbdev in the same environment. Simply follow all the steps above and once you have verified that everything was installed correcty, simply run in the same conda environment:

conda install -c fastai nbdev

If you are new to nbdev, you´d probably also want to check out their comprehensive tutorials and walkthroughs here. I will also add some more contribution guidelines to this repository soon. In the meantime, feel free to get in touch! :-)

Using pip:

Despite the dcl_stats_n_plots package itself is only available via pypi.org, we still highly recommend to follow the installation guidelines “using conda” above, especially if you´d like to use its GUI functionalities. If you´d still want to go down this route, here´s your install command:

pip install dcl-stats-n-plots

How to use

.. the documentation, including the comprehensive tutorials, is currently being updated ..

Next steps

There are some major reorganizations planned:

  1. This repository will be shifted / forked / re-created under the recently established GitHub organisations page of the Defense Circuits Lab, i.e. somewhere here
  2. When this migration is performed, the new repository (ideally also the package) will be renamed to stats_n_plots as the prefix to link it to the DCL will no longer be required
  3. Once the migration was successfully completed, the documentation will be updated to eventually match the “refactored” version, which actually already includes some new statistical tests compared to the old version, as well as additional functions inteded to improve usability (like exporting & importing your current plotting settings)
  4. Finally, once the documentation regarding the usage of dcl_stats_n_plots was updated, I will add some information and guidelines for contribution to this package

Once the steps listed above are all completed, there are plenty of ideas for how to continue developing this package further:

  • integrate tests (especially with the improved CI of nbdev v2 and also once additional contributors join)
  • add additional statistical tests & plots (e.g. Kolmogorov-Smirnov test for goodness of fit for cumulative probability functions, or linear & linear mixed effect models, ..)
  • add additional customization options (optional hue column, fonts, ..)
  • improve how configs are export and imported, ideally to include all settings (type of plot, color scheme, …)
  • create DCL-default configs
  • fix bugs ;-)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dcl_stats_n_plots-0.4.0.tar.gz (31.5 kB view details)

Uploaded Source

Built Distribution

dcl_stats_n_plots-0.4.0-py3-none-any.whl (52.5 kB view details)

Uploaded Python 3

File details

Details for the file dcl_stats_n_plots-0.4.0.tar.gz.

File metadata

  • Download URL: dcl_stats_n_plots-0.4.0.tar.gz
  • Upload date:
  • Size: 31.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.0

File hashes

Hashes for dcl_stats_n_plots-0.4.0.tar.gz
Algorithm Hash digest
SHA256 e81fb3d875c9966028a4f679357a9a34116fe7a5cba295337f80cb76ba3b4f07
MD5 d11a23f4a546ce3b26f5df33ad661883
BLAKE2b-256 86bb87034952ba8afe8127dad774801c09e285510e6872d7f88b2c456cc38472

See more details on using hashes here.

File details

Details for the file dcl_stats_n_plots-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for dcl_stats_n_plots-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6ca518c4d5b6d45ae3e633e23d39848395455277e868b20a1aeb18c0bf7a0223
MD5 a7335f81517a0c865ce4d9a9e083bb82
BLAKE2b-256 8d95d0828ffd2c920b2a40d87fdad39d9e86af6ceadb14f68891e0032b7f51eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page