A tool for checking DICOM compliance against a reference model using Pydantic
Project description
dcm-check
dcm-check
is a command-line tool and Python library for validating DICOM files against specified reference models. This tool supports JSON, DICOM, and Pydantic-based reference models to facilitate compliance checks for DICOM attributes.
Features
- Validate DICOM files against JSON, DICOM, or Pydantic reference models.
- Generate detailed compliance reports, including expected and actual values for each parameter.
- Output results in JSON format for further analysis or logging.
Installation
To install dcm-check
, clone the repository and run:
pip install .
dcm-check
requires Python >=3.10.
Usage
The tool can be used as a command-line interface (CLI) or as an API within Python scripts.
Command-Line Usage
The CLI provides options to specify a reference model and validate a DICOM file. Command Syntax
dcm-check --ref <reference-file> --type <json|dicom|pydantic> --acquisition <acquisition-type> --in <dicom-file> [--fields <field1 field2 ...>] [--out <output-file>]
Arguments:
--ref
: Path to the reference file (JSON, DICOM, or Python module).--type
: Type of reference model (json, dicom, or pydantic).--acquisition
: Acquisition type (e.g., T1, T2w, etc.) when using JSON or Pydantic references; inferred if not given.--in
: Path to the DICOM file to validate.--fields
: (Optional) List of specific DICOM fields to include in validation for DICOM reference types.--out
: (Optional) Path to save the compliance report as a JSON file.
Example Commands:
Validate a DICOM file using a JSON reference model:
dcm-check --ref reference.json --acquisition T1 --in dicom_file.dcm
Validate a DICOM file using another DICOM as a reference:
dcm-check --ref reference.dcm --in dicom_file.dcm --fields EchoTime RepetitionTime
Validate a DICOM file using a Pydantic model in a Python module:
dcm-check --ref reference.py --acquisition T1_MPR --in dicom_file.dcm
Output
The compliance report is printed to the terminal in tabular format. You can also save it to a JSON file using the --out argument.
Parameter Expected Actual Pass
-- ----------------- --------------------------------------------- ----------- ------
0 EchoTime Input should be greater than or equal to 5.74 3.0 False
1 RepetitionTime 29.0 8.0 False
2 SeriesDescription String should match pattern '.*t1.*' T1-weighted False
Example JSON report:
[
{
"Parameter": "EchoTime",
"Expected": "Input should be greater than or equal to 5.74",
"Actual": 2.96,
"Pass": false
},
{
"Parameter": "RepetitionTime",
"Expected": "29.0",
"Actual": 2300.0,
"Pass": false
}
]
Python API Usage
To use dcm-check
programmatically, import the appropriate functions from dcm_check
:
from dcm_check.dcm_check import load_ref_json, load_ref_dicom, load_ref_pydantic, get_compliance_summary, is_compliant
# Example for loading a JSON reference model and checking compliance
reference_model = load_ref_json("reference.json", "T1")
dicom_values = load_dicom("dicom_file.dcm")
compliance_summary = get_compliance_summary(reference_model, dicom_values)
# Print compliance summary
print(compliance_summary)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file dcm_check-0.1.6.tar.gz
.
File metadata
- Download URL: dcm_check-0.1.6.tar.gz
- Upload date:
- Size: 23.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ecc1af6591925fcf0715e0fc9291d9a5ed727ce4061494d0c4d4fe123987367a |
|
MD5 | eb4cc4b933f9d445bdcfda918a2ea720 |
|
BLAKE2b-256 | b84a7f861a3ae29f7a955453da5f883cc5a531fa46662ec37eb8fdfb80e5caf3 |
File details
Details for the file dcm_check-0.1.6-py3-none-any.whl
.
File metadata
- Download URL: dcm_check-0.1.6-py3-none-any.whl
- Upload date:
- Size: 28.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 636596850def7008dc670ecb7a4e04805888b3c149a26999fbaefbfa0b27a052 |
|
MD5 | ddcc028669c231561748d5064ab043cf |
|
BLAKE2b-256 | 684b538a877fd202838b28e154e53a2d6b724717e91b3ef9633e206265581d50 |