Skip to main content

A tool for checking DICOM compliance against a reference model using Pydantic

Project description

dcm-check

dcm-check is a command-line tool and Python library for validating DICOM files against specified reference models. This tool supports JSON, DICOM, and Pydantic-based reference models to facilitate compliance checks for DICOM attributes. Features

  • Validate DICOM files against JSON, DICOM, or Pydantic reference models.
  • Generate detailed compliance reports, including expected and actual values for each parameter.
  • Output results in JSON format for further analysis or logging.

Installation

To install dcm-check, clone the repository and run:

pip install .

dcm-check requires Python >=3.10.

Usage

The tool can be used as a command-line interface (CLI) or as an API within Python scripts.

Command-Line Usage

The CLI provides options to specify a reference model and validate a DICOM file. Command Syntax

dcm-check --ref <reference-file> --type <json|dicom|pydantic> --acquisition <acquisition-type> --in <dicom-file> [--fields <field1 field2 ...>] [--out <output-file>]

Arguments:

  • --ref: Path to the reference file (JSON, DICOM, or Python module).
  • --type: Type of reference model (json, dicom, or pydantic).
  • --acquisition: Acquisition type (e.g., T1, T2w, etc.) when using JSON or Pydantic references; inferred if not given.
  • --in: Path to the DICOM file to validate.
  • --fields: (Optional) List of specific DICOM fields to include in validation for DICOM reference types.
  • --out: (Optional) Path to save the compliance report as a JSON file.

Example Commands:

Validate a DICOM file using a JSON reference model:

dcm-check --ref reference.json --acquisition T1 --in dicom_file.dcm

Validate a DICOM file using another DICOM as a reference:

dcm-check --ref reference.dcm --in dicom_file.dcm --fields EchoTime RepetitionTime

Validate a DICOM file using a Pydantic model in a Python module:

dcm-check --ref reference.py --acquisition T1_MPR --in dicom_file.dcm

Output

The compliance report is printed to the terminal in tabular format. You can also save it to a JSON file using the --out argument.

    Parameter          Expected                                       Actual       Pass
--  -----------------  ---------------------------------------------  -----------  ------
 0  EchoTime           Input should be greater than or equal to 5.74  3.0          False
 1  RepetitionTime     29.0                                           8.0          False
 2  SeriesDescription  String should match pattern '.*t1.*'           T1-weighted  False

Example JSON report:

[
    {
        "Parameter": "EchoTime",
        "Expected": "Input should be greater than or equal to 5.74",
        "Actual": 2.96,
        "Pass": false
    },
    {
        "Parameter": "RepetitionTime",
        "Expected": "29.0",
        "Actual": 2300.0,
        "Pass": false
    }
]

Python API Usage

To use dcm-check programmatically, import the appropriate functions from dcm_check:

from dcm_check.dcm_check import load_ref_json, load_ref_dicom, load_ref_pydantic, get_compliance_summary, is_compliant

# Example for loading a JSON reference model and checking compliance
reference_model = load_ref_json("reference.json", "T1")
dicom_values = load_dicom("dicom_file.dcm")
compliance_summary = get_compliance_summary(reference_model, dicom_values)

# Print compliance summary
print(compliance_summary)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dcm_check-0.1.5.tar.gz (23.8 kB view details)

Uploaded Source

Built Distribution

dcm_check-0.1.5-py3-none-any.whl (28.1 kB view details)

Uploaded Python 3

File details

Details for the file dcm_check-0.1.5.tar.gz.

File metadata

  • Download URL: dcm_check-0.1.5.tar.gz
  • Upload date:
  • Size: 23.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dcm_check-0.1.5.tar.gz
Algorithm Hash digest
SHA256 cb2b29b025cc1367e3a82c105561a60eab42edcf613c7f96c4d33bf881b914e9
MD5 64a4aeb576aa9a738905a81eca1c523a
BLAKE2b-256 55df1479dcfa6afcbb26bf06dd58a8c21acf0a5bf3f21652d46d213293aed6a9

See more details on using hashes here.

File details

Details for the file dcm_check-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: dcm_check-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 28.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for dcm_check-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 fb3c975372e1de91692e652ce28754f3f1a0c350d186f6327db1e7f87a4a0a2f
MD5 fb357b97e6c712a17324227ad28ad991
BLAKE2b-256 002feeccdfcba6c1f0f52b66d99a691f7b836c7256e372622ab589426ec2d8ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page