Skip to main content

A python toolbox for dynamic contrast MRI

Project description

https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA https://img.shields.io/pypi/v/dcmri?label=pypi%20package https://img.shields.io/pypi/dm/dcmri https://img.shields.io/badge/License-Apache_2.0-blue.svg

A python toolbox for dynamic contrast MRI

Note: dcmri is under construction. At this stage, the API may still change and features may be deprecated without warning.

Install

Install the latest version of dcmri:

$ pip install dcmri

ROI-based analysis

import dcmri as dc

time, aif, roi, _ = dc.fake_tissue(CNR=50)   # Generate some test data
tissue = dc.Tissue(aif=aif, t=time)          # Launch a tissue model
tissue.train(time, roi)                      # Train the tissue on the data
tissue.plot(time, roi)                       # Check the fit to the data
https://dcmri.org/_images/tissue.png
tissue.print(round_to=3)                     # Print the fitted parameters
--------------------------------
Free parameters with their stdev
--------------------------------

Blood volume (vb): 0.018 (0.002) mL/cm3
Interstitial volume (vi): 0.174 (0.004) mL/cm3
Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3

----------------------------
Fixed and derived parameters
----------------------------

Plasma volume (vp): 0.01 mL/cm3
Interstitial mean transit time (Ti): 74.614 sec

Pixel-based analysis

n = 128
time, signal, aif, _ = dc.fake_brain(n)      # Generate some test data
image = dc.TissueArray((n, n),               # Launch an array model
   aif = aif,
   t = time,
   kinetics = '2CU',
   verbose = 1)
image.train(time, roi)                       # Train the tissue on the data
image.plot(time, roi)                        # Plot the parameter maps
https://dcmri.org/_images/pixel_2cu.png

License

Released under the Apache 2.0 license:

Copyright (C) 2023-2024 dcmri developers

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dcmri-0.6.10.tar.gz (749.6 kB view details)

Uploaded Source

Built Distribution

dcmri-0.6.10-py3-none-any.whl (746.2 kB view details)

Uploaded Python 3

File details

Details for the file dcmri-0.6.10.tar.gz.

File metadata

  • Download URL: dcmri-0.6.10.tar.gz
  • Upload date:
  • Size: 749.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dcmri-0.6.10.tar.gz
Algorithm Hash digest
SHA256 0b98d0056d3337fb69fa7a1771400ccb721e09b456aa7e7d225071f7d77a3305
MD5 b063365e5fb323127e9a7b1f01684c03
BLAKE2b-256 bd091f5f69662977ffac7595b5def0a821d4a8c20ff60996ae23e5b646af558c

See more details on using hashes here.

File details

Details for the file dcmri-0.6.10-py3-none-any.whl.

File metadata

  • Download URL: dcmri-0.6.10-py3-none-any.whl
  • Upload date:
  • Size: 746.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dcmri-0.6.10-py3-none-any.whl
Algorithm Hash digest
SHA256 48af00f456f83a5d62e1f66d0ea7fe808a1732566ab5b0260c8ee05c88bac593
MD5 954a19cddfcb59e6aa703111d512d0cb
BLAKE2b-256 4795d0534d5f94b872204db20405d71bbe7a8c84049d39401f253f07d15c14d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page