Skip to main content

A python toolbox for dynamic contrast MRI

Project description

https://github.com/dcmri/dcmri/actions/workflows/pytest-actions.yaml/badge.svg?branch=dev https://codecov.io/gh/plaresmedima/dcmri/graph/badge.svg?token=DLVVTWQ0HA https://img.shields.io/pypi/v/dcmri?label=pypi%20package https://img.shields.io/pypi/dm/dcmri https://img.shields.io/badge/License-Apache_2.0-blue.svg

A python toolbox for dynamic contrast MRI

Note: dcmri is under construction. At this stage, the API may still change and features may be deprecated without warning.

Install

Install the latest version of dcmri:

$ pip install dcmri

ROI-based analysis

import dcmri as dc

time, aif, roi, _ = dc.fake_tissue(CNR=50)   # Generate some test data
tissue = dc.Tissue(aif=aif, t=time)          # Launch a tissue model
tissue.train(time, roi)                      # Train the tissue on the data
tissue.plot(time, roi)                       # Check the fit to the data
docs/source/user_guide/tissue.png
tissue.print(round_to=3)                     # Print the fitted parameters
--------------------------------
Free parameters with their stdev
--------------------------------

Blood volume (vb): 0.018 (0.002) mL/cm3
Interstitial volume (vi): 0.174 (0.004) mL/cm3
Permeability-surface area product (PS): 0.002 (0.0) mL/sec/cm3

----------------------------
Fixed and derived parameters
----------------------------

Plasma volume (vp): 0.01 mL/cm3
Interstitial mean transit time (Ti): 74.614 sec

Pixel-based analysis

n = 128
time, signal, aif, _ = dc.fake_brain(n)      # Generate some test data
image = dc.TissueArray((n, n),               # Launch an array model
   aif = aif,
   t = time,
   kinetics = '2CU',
   verbose = 1)
image.train(time, roi)                       # Train the tissue on the data
image.plot(time, roi)                        # Plot the parameter maps
docs/source/user_guide/pixel.png

License

Released under the Apache 2.0 license:

Copyright (C) 2023-2024 dcmri developers

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dcmri-0.6.9.tar.gz (749.6 kB view details)

Uploaded Source

Built Distribution

dcmri-0.6.9-py3-none-any.whl (746.2 kB view details)

Uploaded Python 3

File details

Details for the file dcmri-0.6.9.tar.gz.

File metadata

  • Download URL: dcmri-0.6.9.tar.gz
  • Upload date:
  • Size: 749.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dcmri-0.6.9.tar.gz
Algorithm Hash digest
SHA256 42aceb0fb69c2b744fb08a51b9dfdb2e5a81aeebf44d58c8dd72b66aa58d537c
MD5 d271d1cc7f4e6168ea68b6fac3a1fc84
BLAKE2b-256 330ac2c59cd9c0c5f1fda766e9674d9901ab0e415fb410a8d917de4106abffac

See more details on using hashes here.

File details

Details for the file dcmri-0.6.9-py3-none-any.whl.

File metadata

  • Download URL: dcmri-0.6.9-py3-none-any.whl
  • Upload date:
  • Size: 746.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.10

File hashes

Hashes for dcmri-0.6.9-py3-none-any.whl
Algorithm Hash digest
SHA256 3055daf726b5fd6473b8bff0cced382afbc7aac33a5b1ded159643e3a456bce5
MD5 8d47b260d8cf83edd9a10e1bd6f64bde
BLAKE2b-256 9cb28cbcdef68c823e2ad914ebd8a20d185fb6f51261fc20bc1273cb2f656d8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page