Skip to main content

Differential Correlation Network Analysis

Project description

DCoNA: tool for fast Differential Correlation Network Analysis

DCoNA is a statistical tool that allows one to identify pair interactions, which correlation significantly changes between two conditions. DCoNA was designed to test the hypothesis for a predefined list of source and target pairs ("Network" regime). However, DCoNA can also be used in the complete- network regime when the list is not given ("Exhaustive" regime). In this regime, DCoNA tests the hypothesis for all possible pairs of molecules from expression data. Aside from the hypothesis testing, DCoNA can be used to test that significantly altered correlations of a particular source molecule are overrepresented among all significantly changed correlations. Also, DCoNA can compute mean, median, and other quantiles of z-statistics associated with a particular molecule and its targets to determine a trend in correlation changes.

If you use DCoNA in work contributing to a scientific publication, we ask you to cite our publication:

Anton Zhiyanov, Narek Engibaryan, Stepan Nersisyan, Maxim Shkurnikov, Alexander Tonevitsky, Differential co-expression network analysis with DCoNA reveals isomiR targeting aberrations in prostate cancer, Bioinformatics, Volume 39, Issue 2, February 2023, btad051
https://doi.org/10.1093/bioinformatics/btad051

Table of Contents

Installation

Installation using pip

pip install dcona

Downloading example dataset

You can try DCoNA on TCGA-PRAD test dataset

Usage

You can use DCoNA either as Python-module or as a command-line tool.

Example

Detailed description of functions with data example and test launch.

Available functions

dcona.ztest

It tests the hypothesis on correlation equiavalence between pairs of genes

dcona.ztest(data_df, description_df, reference_group, experimental_group, correlation='spearman', alternative='two-sided', interaction=None, repeats_number=None, output_dir=None, process_number=None)
  • Command-line usage:
    dcona ztest config.json
    

dcona.zscore

It aggregates correlation changes of source molecule with all its targets.

dcona.zscore(data_df, description_df, reference_group, experimental_group, correlation='spearman', score='mean', alternative='two-sided', interaction=None, repeats_number=None, output_dir=None, process_number=None)
  • Command-line usage:
    dcona zscore config.json
    

dcona.hypergeom

It groups pairs with changed correlations by the source molecules and finds overrepresented groups using the hypergeometric test.

dcona.hypergeom(ztest_df, alternative='two-sided', oriented=True, output_dir=None)
  • Command-line usage:
    You should launch ztest and then hypergeom with the same config file.
    dcona hypergeom config.json
    

Data structure for CLI launch

To run the tool in command line you need the following data:

  • config.json containing data filenames and tool usage parameters
{
	"data_path": "./example/data/data.csv",
	"description_path": "./example/data/description.csv",
	"interaction_path": "./example/data/interactions.csv",
	"output_dir_path": "./../output/",
	
	"reference_group": "Normal",
	"experimental_group": "Tumor",

	"correlation": "spearman",
	"alternative": "two-sided",
	"score": "mean",
	"repeats_number": 500,
	"process_number": 2
}

Both relative and absolute file paths can be used.

Data description:

  • data_path : data.csv contains an expression table. Rows of the table should be grouped by genes, miRNAs, isomiRNAs and other items. Columns of the table are grouped by patients taken from two different groups.

    Structure of data.csv :

    sample_1 ... sample_n
    gene_1 1.2345 ... 1.2345
    ... ... ... ...
    gene_n 1.2345 ... 1.2345
  • description_path : description.csv divide patients into two non-intersecting groups (e.g. Normal and Tumor patients). It is assumed that a patient does not belong to the both groups simultaneously.

    Structure of description.csv:

    Sample Group
    sample_1 condition_1
    ... ...
    sample_n condition_2

    Column names have to be exactly Sample and Group.

  • interaction_path (optional): interaction.csv contains source/target pairs - correlations will be computed among this pairs (in network mode). You should delete this line from the config file if you want to launch an exhaustive mode.

    Structure of interaction.csv:

    Source Target
    source_gene_1 target_gene_2
    ... ...
    source_gene_n target_gene_n

    Column names have to be exactly Source and Target.

  • output_dir_path is a path to an output directory.

Usage parameters:

  • reference_group, experimental_group are names of the patient groups.

  • correlation : spearman or pearson, defines the type of correlation that will be used in the tool.

  • alternative : two-sided, less or greater.

    TODO: describe the parameter meaning in ztest and zscore regimes.

Network and exhaustive regimes

DCoNA has two working regimes:

  • Network (interactions) regime - performs calculations only on given gene pairs. Requires an interaction.csv file.
  • Exhaustive (all vs all) regime - generates all possible gene pairs from genes listed in data.csv and performs calculations. An interaction.csv file is not needed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dcona-0.3.0.tar.gz (38.3 kB view details)

Uploaded Source

Built Distributions

dcona-0.3.0-pp38-pypy38_pp73-win_amd64.whl (587.3 kB view details)

Uploaded PyPy Windows x86-64

dcona-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (594.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dcona-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (452.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

dcona-0.3.0-cp312-cp312-win_amd64.whl (566.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

dcona-0.3.0-cp312-cp312-win32.whl (483.2 kB view details)

Uploaded CPython 3.12 Windows x86

dcona-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dcona-0.3.0-cp312-cp312-macosx_11_0_arm64.whl (447.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dcona-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl (471.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

dcona-0.3.0-cp312-cp312-macosx_10_9_universal2.whl (887.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

dcona-0.3.0-cp311-cp311-win_amd64.whl (563.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

dcona-0.3.0-cp311-cp311-win32.whl (481.0 kB view details)

Uploaded CPython 3.11 Windows x86

dcona-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dcona-0.3.0-cp311-cp311-macosx_11_0_arm64.whl (454.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dcona-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl (477.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

dcona-0.3.0-cp311-cp311-macosx_10_9_universal2.whl (900.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

dcona-0.3.0-cp310-cp310-win_amd64.whl (558.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

dcona-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dcona-0.3.0-cp310-cp310-macosx_11_0_arm64.whl (448.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dcona-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl (470.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

dcona-0.3.0-cp310-cp310-macosx_10_9_universal2.whl (887.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

dcona-0.3.0-cp39-cp39-win_amd64.whl (560.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

dcona-0.3.0-cp39-cp39-win32.whl (476.5 kB view details)

Uploaded CPython 3.9 Windows x86

dcona-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dcona-0.3.0-cp39-cp39-macosx_11_0_arm64.whl (448.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dcona-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (471.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

dcona-0.3.0-cp39-cp39-macosx_10_9_universal2.whl (888.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

dcona-0.3.0-cp38-cp38-win_amd64.whl (586.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

dcona-0.3.0-cp38-cp38-win32.whl (475.9 kB view details)

Uploaded CPython 3.8 Windows x86

dcona-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dcona-0.3.0-cp38-cp38-macosx_11_0_arm64.whl (447.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

dcona-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (469.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

dcona-0.3.0-cp38-cp38-macosx_10_9_universal2.whl (886.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file dcona-0.3.0.tar.gz.

File metadata

  • Download URL: dcona-0.3.0.tar.gz
  • Upload date:
  • Size: 38.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9bc8c042ba8491859f9bd5a4de28b7303c9d94023aaec346b5af2ded160ffb50
MD5 9b3c851e36846cbbe66a131f999a80f3
BLAKE2b-256 12a13a8f2ddab4e573565e1fe4e2bba8352701c7a1fa79027668afa5cf6f7d43

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 abdffc5718ae33b4ba5aaaaf03d2dc8a88c4a9aa995ee119850723c30906f810
MD5 5d616f06395e786f0304d9526a146440
BLAKE2b-256 08b13f26e9b987e683c46da257bc045065b1cff2734d663d8eb86ec92022281d

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78a3923c240e43e4d7bc42bc24c4bf43c8d9687fd9683468fbd62e96ccc99405
MD5 b8b27dfeb08000d0e4cfe7d21778c9b1
BLAKE2b-256 8baa568b32b70f2c643c087ab044c098a140d49af32bd127fd375e71d3163908

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0592da18eada9989819f9a33b00a08893dddea9cecf625c39fc96020731f67ab
MD5 42684fa693dd56d364ed47268a84b55b
BLAKE2b-256 e583149ca3a936288e15f4dfaa3f544c6e841be3231ca3f9d1566a25db7a81f8

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dcona-0.3.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 566.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e2cfe551e3c007a58604001a28cf706ea2b03dc1cd96c6b42c39c38ec1d70010
MD5 a26b578c2e605aa49c2f7fed6272778e
BLAKE2b-256 bff31a5d5fe6fb0c74646360eb839bdfd2045cb6842d79c9bff60b253362886e

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: dcona-0.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 483.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5044239433d630a03947a7d4415a632d2c71982cadd9e76de0bb7f4775e403ca
MD5 e5a258d598ab74e0dd0e14f52b41cb35
BLAKE2b-256 f01894275938325806e3aeb85974928dedd1356373daf89c46e3d347795fa938

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be12c8a08352a8796028c9aa27f0b3b6936bf504088fa433f5c72ad8a4a03216
MD5 ea15dcea2171ce21a86b066603c4089d
BLAKE2b-256 6a1867f253f82acbd8693ac5f2ec175455c65eea0c37b351ba5c2963858e1a5d

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c15635ac647eacebc5249caaf49454758e6424b1e02f8db2c72402a2761aabb8
MD5 f2bda9f596015c1f59995799bf53a74e
BLAKE2b-256 74833c479420a3d09b0d5adef2a57c87da302942b8aa8027df0ba043d999565a

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 611aa56c6c389d73b948f2e7268fc51619eece5aef8be8925cd202c184d54cb3
MD5 0e4a92593a3033f549620d0b5f39aef5
BLAKE2b-256 3d94d2f8e38ead9e78f79efdc7ffcd961eb55f9fd1faa91178647ebd5526b229

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73baec71139913835c8e40c259249998dd0c2603ca4c78a5d00d81117d3b1b35
MD5 5b3d3ce2470fba80e5d959cd2ee8dc15
BLAKE2b-256 557db299d0f215e63f234fc7d12940f4ac42613876c2ae3b8ac68a9f1fde9e83

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dcona-0.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 563.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 61ae29f03307de76048151eba5afea5dc9520ff6c7d3103cd31cb38f3cae29d9
MD5 cf2839cd93eed3c6e92afea95f8fffb0
BLAKE2b-256 0cd2ca3ad8fe1420e272b34b14f055cb46b2e19587a2649f219eda81ef71c1c7

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: dcona-0.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 481.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 39216f9aba14879b4885490fb3cb30ef9395cd126b8ffe15f5fbf818f9d5f2be
MD5 603d962461efcfce4312fdab743f4412
BLAKE2b-256 3b12c3d405e0962f52cf534d209521e090a9e7e707fc014e9eeadef16d21faab

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29fde736354bfb7d852f3c2b679cd1006fc7fdfa246c3893363d5d271c9b4bc5
MD5 a4c605700d660f6f118118ed7306ac76
BLAKE2b-256 30b4d7db4580eab144b685f197f6ee67275312394dbf93119eb81f86da70fe86

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69488b48419645497f3cfe4ae5fadad76f08b6f56bb9ee06e851a642d415c494
MD5 0bf946167f5ec65eb212346719e23dfc
BLAKE2b-256 d8e41494712e999c03282c7b5c9bc5c61a534a316cca35f93c1144614eb298f1

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e0acb9a09d2e406fee05f1c9d309b8acead380c80000eb4e8091bbbc66b154b8
MD5 d85f51fa9682862157399827700146b4
BLAKE2b-256 326f8f6b201b19530921c856b0c629e5f00bb31503d54a7adc1e7d638745693b

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5f046340c9fd21957c9e8a74a22d5f7b045f969bbf43dd2033de940b2a64038e
MD5 7fcbb749aef507bf5f6293dbca602272
BLAKE2b-256 87c9fb474610c20eac656896b9f3b6f8816553edc1567c037aaa6e2e631e17db

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: dcona-0.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 558.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bade45843668920f3e207551df60b8a9434d26256a06f2dfd10b12278e8f684c
MD5 9bba3c9c4fe3c28c026ad8f1d18519f4
BLAKE2b-256 04548db7d5dc0d9fd504d405a808b0a5c7f7b93a63e46fee8b28f1c5420d3a93

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff07956110d1e6afdf853465abf413fd4c793d3e6caea8eb3f6c0097b8f47f52
MD5 2443c1a5037a947ec917d49ccc5553a9
BLAKE2b-256 55d043d7c7ae5eaeb7534258ed6c596ce59a1741e7f4b6498248fd907aa4b349

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4afe44399388a7e5180379458111a46d6a51f222fe7e31763a2fb8ff745e407b
MD5 dfa0df2704f5824c93296ef77fc32637
BLAKE2b-256 e2e58cbcb78edb1919e6bce4e85b2338fa6772d1b25628a837958551f93b571d

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bf85c0d7d07f3161b26ee7ed45da2d0b4b0d2925a0587aa65b40e2a8642b9b6
MD5 306214eec8f8c147e6b821143d0b80fa
BLAKE2b-256 ba51e71a2c4cdb835a46bbb6294f36be7baa6cb434e8fe530c9c7ace5ae87bec

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ba835201f3af57c08def8a75fb34136fb405f9b5a7a848c59d8ea746a8fb4887
MD5 7e7dfd7caa62f5adfb39313a9d139632
BLAKE2b-256 e7817515afab394e09eec1eac2a4b9d907c7c4676385965b8bc58cd003e8c86d

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dcona-0.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 560.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1781a4a6d77d4793ad0b61a4731db698ef3001fed4279eb525aafa55fb93b90b
MD5 b74cc83190170785d7fb9acaf2092575
BLAKE2b-256 4ba010e90b60446b57e9130955a4d88b6c743a7b3337ad1aced8808bcdf34144

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: dcona-0.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 476.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b1f0048659a4067eefb81c1f3138ed2e152335951a2918b35620ab0930d921d2
MD5 feef5842fc6b1d07b4a740c536b0b344
BLAKE2b-256 8a0ac0f274aa82d36f77f98b6296732b4f8b1f33dba75b43809092f243a7bc59

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c1d00bcbafabc052bdf89b36e065c738d6924e2fc207de7ce132f8c78b89625
MD5 6eae52e4ccfc7b9fa117c4f04e209eba
BLAKE2b-256 a0d9bd6dc4ea4ec79679193e8470cd77361210c0a508fd826713175158b6d787

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbaa6b10139c25ae9df6cb85378d978d69b93a27cdf2015923b5e3ead1c3f442
MD5 74e4e842b604ab617cb107249a2029a2
BLAKE2b-256 6164d2847503f099e16954c5ffaba486608b466bd05abb1aab451ddf8b66c952

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4daaff4f5425d4ecf6ee0c1d0a162aa36d001d3f3523f9ed108043e000f1bb9b
MD5 a38806a3496cd5231bb749d032c352b7
BLAKE2b-256 8eef72f8c71c9cef7f189755f2602281eaecaa4d613a34ef484e2bce8f34617f

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ef27c7b4ad21ca29dc923d10f111f921162b0e045ef78fb59d7acf7583bc2de7
MD5 43e41df5b17e1c5d76434a8b3b16600d
BLAKE2b-256 1f306dd337c770c3bfd07d039a10d93aab5989b901a9fc8f86b4a3be1774602d

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dcona-0.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 586.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b74c687ce91da22f69a03d177ee0257e97f15e721c108337275e4152fcaec758
MD5 e6d647079c220cfbdc33a0e200274eb7
BLAKE2b-256 dfb6f024e8b300c43d5d5a768e4bbc062515bd5fbc09ff0ae6d26cd6804d1496

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: dcona-0.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 475.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for dcona-0.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6fc42162384350aaf454fa28ef06ea6023145a09b76dd1ba4fcac792c8363e9f
MD5 3fd3315f9b309ec47d1eb88f25969df9
BLAKE2b-256 b0e3e8ef0252320c71fcb004575b1d419699233e6651b2a50c16aab4f3f3303f

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 625ed9a1589476ca03055d8e6b60a7c667bda5fa43d574e788eac8d53cc9c750
MD5 c773c17e4f245f9849300e4fe1ce91df
BLAKE2b-256 14d53b779c94df11f07149ec16f47803de000bf80528e1106c0c007a0b1d06d0

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c476c3f213ef6b7c502d167aa9ccd4448c38a14dde243ef9445505c3b347950
MD5 572373929c99d5c6142c017969f4300a
BLAKE2b-256 d0c8d8b211693d34eaab088b19e28b8904b30bbe60125beb02d8c426f30331b1

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0591edb5d3979ccab99acfe7a430cebac5103396c3c04d29e1e06268e08cd40
MD5 098b661b20719919cff18fdc153a0ac8
BLAKE2b-256 e880c66bb3c7560a87104bc28899841c239196b7ce04505efda6a634d6097418

See more details on using hashes here.

File details

Details for the file dcona-0.3.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for dcona-0.3.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8f1f8d996f4551451b53126dfef88e59daa81aa602f3dedae8a84cbecaf55a76
MD5 d816eb6cf48cf210509e5ff56488e0f9
BLAKE2b-256 25dd13c4723ed3302b5d19bf791549d0e18172ebbbc3155b3a256f3c12a84bb5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page