Skip to main content

Custom Database Queries

Project description

Few Utility Functions

License Python PyPi Build Status

Install All databases dependencies

pip install ddcDatabases[all]

Install MSSQL

pip install ddcDatabases[mssql]

Install PostgreSQL

pip install ddcDatabases[pgsql]

Databases

  • Parameters for all classes are declared as OPTIONAL falling back to .env file
  • All examples are using db_utils.py
  • By default, the MSSQL class will open a session to the database, but the engine can be available

SQLITE

class Sqlite(
    file_path: Optional[str] = None,
    echo: Optional[bool] = None,
)

Session

import sqlalchemy as sa
from ddcDatabases import DBUtils, Sqlite
with Sqlite() as session:
    utils = DBUtils(session)
    stmt = sa.select(Table).where(Table.id == 1)
    results = utils.fetchall(stmt)
    for row in results:
        print(row)

Sync Engine

from ddcDatabases import Sqlite
with Sqlite().engine() as engine:
    ...

MSSQL

class MSSQL(        
    host: Optional[str] = None,
    port: Optional[int] = None,
    username: Optional[str] = None,
    password: Optional[str] = None,
    database: Optional[str] = None,
    schema: Optional[str] = None,
    echo: Optional[bool] = None,
    pool_size: Optional[int] = None,
    max_overflow: Optional[int] = None
)

Sync Example

import sqlalchemy as sa
from ddcDatabases import DBUtils, MSSQL
with MSSQL() as session:
    stmt = sa.select(Table).where(Table.id == 1)
    db_utils = DBUtils(session)
    results = db_utils.fetchall(stmt)
    for row in results:
        print(row)

Async Example

import sqlalchemy as sa
from ddcDatabases import DBUtilsAsync, MSSQL
async with MSSQL() as session:
    stmt = sa.select(Table).where(Table.id == 1)
    db_utils = DBUtilsAsync(session)
    results = await db_utils.fetchall(stmt)
    for row in results:
        print(row)

Sync Engine

from ddcDatabases import MSSQL
with MSSQL().engine() as engine:
    ...

Async Engine

from ddcDatabases import MSSQL
async with MSSQL().async_engine() as engine:
    ...

PostgreSQL

class DBPostgres(
    host: Optional[str] = None,
    port: Optional[int] = None,
    username: Optional[str] = None,
    password: Optional[str] = None,
    database: Optional[str] = None,
    echo: Optional[bool] = None,
)

Sync Example

import sqlalchemy as sa
from ddcDatabases import DBUtils, PostgreSQL
with PostgreSQL() as session:
    stmt = sa.select(Table).where(Table.id == 1)
    db_utils = DBUtils(session)
    results = db_utils.fetchall(stmt)
    for row in results:
        print(row)

Async Example

import sqlalchemy as sa
from ddcDatabases import DBUtilsAsync, PostgreSQL
async with PostgreSQL() as session:
    stmt = sa.select(Table).where(Table.id == 1)
    db_utils = DBUtilsAsync(session)
    results = await db_utils.fetchall(stmt)
    for row in results:
        print(row)

Sync Engine

from ddcDatabases import PostgreSQL
with PostgreSQL().engine() as engine:
    ...

Async Engine

from ddcDatabases import PostgreSQL
async with PostgreSQL().async_engine() as engine:
    ...

DBUtils and DBUtilsAsync

  • Take an open session as parameter
  • Can use SQLAlchemy statements
  • Execute function can be used to update, insert or any SQLAlchemy.text
from ddcDatabases import DBUtils
db_utils = DBUtils(session)
db_utils.fetchall(stmt)                     # returns a list of RowMapping
db_utils.fetchvalue(stmt)                   # fetch a single value, returning as string
db_utils.insert(stmt)                       # insert into model table
db_utils.deleteall(model)                   # delete all records from model
db_utils.insertbulk(model, list[dict])      # insert records into model from a list of dicts
db_utils.execute(stmt)                      # this is the actual execute from session

Source Code

Build

poetry build -f wheel

Run Tests and Get Coverage Report

poetry run coverage run --omit=./tests/* --source=./ddcDatabases -m pytest -v && poetry run coverage report

License

Released under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ddcdatabases-1.0.9.tar.gz (7.7 kB view details)

Uploaded Source

Built Distribution

ddcdatabases-1.0.9-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file ddcdatabases-1.0.9.tar.gz.

File metadata

  • Download URL: ddcdatabases-1.0.9.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ddcdatabases-1.0.9.tar.gz
Algorithm Hash digest
SHA256 c09d81997aaf9533b07ccf8bfaff61a85ebdfa6b029a77596770249905c586b3
MD5 9bbdd3855dce49344b734e6ccbdeb972
BLAKE2b-256 af3f86fed33d9bf074e24d466d12e5161af82f46df46dd39dd0746d9ff403ea2

See more details on using hashes here.

Provenance

The following attestation bundles were made for ddcdatabases-1.0.9.tar.gz:

Publisher: workflow.yml on ddc/ddcDatabases

Attestations:

File details

Details for the file ddcdatabases-1.0.9-py3-none-any.whl.

File metadata

  • Download URL: ddcdatabases-1.0.9-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ddcdatabases-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 9ac9cbfbf3002a1f57cda83ed26cb85135b0bf90dc7f99fa21fcb8765257bf59
MD5 50eaa580c9e4a00e283dd12c958c47da
BLAKE2b-256 665ae12a616cd8dcaf25ea9d2185df8fcd776c2a837c3435c79a39ad3cebead9

See more details on using hashes here.

Provenance

The following attestation bundles were made for ddcdatabases-1.0.9-py3-none-any.whl:

Publisher: workflow.yml on ddc/ddcDatabases

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page