Skip to main content

this calculate symbolic determinants

Project description

Hi welcome to ddd_layer V 0.0.2

DDD Method should compute matrix whit size 4x4 and up. If you try compute a system 3x3 or 2x2 is important don't use DDD, just use Sympy method (ADJ, GE or LU).

DDD works whit symengine is fast and also DDD works better.

1.- instructions for use: example to use:

#from ddd_layer import DDD
#from symengine import symbols as sym
#import numpy as np

#R1 = sym('R1'); R2 = sym('R2'); R3 = sym('R3'); R4 = sym('R4'); R5 = sym('R5')
#C1 = sym('C1'); C2 = sym('C2'); C3 = sym('C3'); C4 = sym('C4'); C5 = sym('C5')
#L1 = sym('L1'); L2 = sym('L2'); L3 = sym('L3'); L4 = sym('L4'); L5 = sym('L5')
#s = sym('s')
#V1 = sym('V1');V2=sym('V2');V3=sym('V3');I1=sym('I1');I2=sym('I2');I3=sym('I3')
#A = [[1/R1+1/R2, R1, 1/R2+1/R3, 1/R5, 1/R4+1/(L3*s), C1*s],
    #    [C2*s, C3*s+1/R1+1/(L4*s), 1/R2, L1,L2,L3],
 	#    [C1,C2,C3,C4,C5,R5],
 	#    [C1*s,C2*s,C3*s,C4*s,1/(L1*s)+1/(L2*s)+1/(L3*s)+1/(L4*s),1/(R1+C1*s)],
    #    [1/(L1*s),1/(L2*s),1/(L3*s),1/(L4*s),1/(L5*s),1/(R1+(1/R5))],
 	#    [58+R1,0.6*R2,1e-6*C5*s,235+1/R5,1/L4*s+235,1/R1 + 1/R2]
	#    ]

#x = [[],
#     [],
#     [],
#     [],
#     []]

#z = [[V1],
#     [V2],
#     [V3],
#     [I1],
#     [I2],
#     [I3]]

#A = np.array(A,dtype=object)
#x = np.array(x,dtype=object)
#z = np.array(z,dtype=object)

#out = DDD.DDDs(A,x,z)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ddd_layer-0.0.2.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

ddd_layer-0.0.2-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file ddd_layer-0.0.2.tar.gz.

File metadata

  • Download URL: ddd_layer-0.0.2.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for ddd_layer-0.0.2.tar.gz
Algorithm Hash digest
SHA256 d2401cb36e98e2811689efdfe236a80c7b82950c89de9511d3bbe934e1e54a54
MD5 3699cee11d88d07ba730c20138fda4de
BLAKE2b-256 5bd76df3c5bcf6f6338ee2dbc621d0086c50a5ffe587c37f517c7a7851e6aa0f

See more details on using hashes here.

File details

Details for the file ddd_layer-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: ddd_layer-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for ddd_layer-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d66285fe559f665efec603be0de05313c20c7175b5e29afa3cb6c3f749839f14
MD5 fc62ebba952b96cea029fd13919e574f
BLAKE2b-256 b4049134b2f9ecefc7270e48bbb36099d1beae9a7937cf79e6a4ba2bb6aa4706

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page