this calculate symbolic determinants
Project description
Hi welcome to ddd_layer V 0.0.2
DDD Method should compute matrix whit size 4x4 and up. If you try compute a system 3x3 or 2x2 is important don't use DDD, just use Sympy method (ADJ, GE or LU).
DDD works whit symengine is fast and also DDD works better.
1.- instructions for use: example to use:
#from ddd_layer import DDD
#from symengine import symbols as sym
#import numpy as np
#R1 = sym('R1'); R2 = sym('R2'); R3 = sym('R3'); R4 = sym('R4'); R5 = sym('R5')
#C1 = sym('C1'); C2 = sym('C2'); C3 = sym('C3'); C4 = sym('C4'); C5 = sym('C5')
#L1 = sym('L1'); L2 = sym('L2'); L3 = sym('L3'); L4 = sym('L4'); L5 = sym('L5')
#s = sym('s')
#V1 = sym('V1');V2=sym('V2');V3=sym('V3');I1=sym('I1');I2=sym('I2');I3=sym('I3')
#A = [[1/R1+1/R2, R1, 1/R2+1/R3, 1/R5, 1/R4+1/(L3*s), C1*s],
# [C2*s, C3*s+1/R1+1/(L4*s), 1/R2, L1,L2,L3],
# [C1,C2,C3,C4,C5,R5],
# [C1*s,C2*s,C3*s,C4*s,1/(L1*s)+1/(L2*s)+1/(L3*s)+1/(L4*s),1/(R1+C1*s)],
# [1/(L1*s),1/(L2*s),1/(L3*s),1/(L4*s),1/(L5*s),1/(R1+(1/R5))],
# [58+R1,0.6*R2,1e-6*C5*s,235+1/R5,1/L4*s+235,1/R1 + 1/R2]
# ]
#x = [[],
# [],
# [],
# [],
# []]
#z = [[V1],
# [V2],
# [V3],
# [I1],
# [I2],
# [I3]]
#A = np.array(A,dtype=object)
#x = np.array(x,dtype=object)
#z = np.array(z,dtype=object)
#out = DDD.DDDs(A,x,z)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ddd_layer-0.0.2.tar.gz
(21.7 kB
view details)
Built Distribution
ddd_layer-0.0.2-py3-none-any.whl
(21.0 kB
view details)
File details
Details for the file ddd_layer-0.0.2.tar.gz
.
File metadata
- Download URL: ddd_layer-0.0.2.tar.gz
- Upload date:
- Size: 21.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2401cb36e98e2811689efdfe236a80c7b82950c89de9511d3bbe934e1e54a54 |
|
MD5 | 3699cee11d88d07ba730c20138fda4de |
|
BLAKE2b-256 | 5bd76df3c5bcf6f6338ee2dbc621d0086c50a5ffe587c37f517c7a7851e6aa0f |
File details
Details for the file ddd_layer-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: ddd_layer-0.0.2-py3-none-any.whl
- Upload date:
- Size: 21.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d66285fe559f665efec603be0de05313c20c7175b5e29afa3cb6c3f749839f14 |
|
MD5 | fc62ebba952b96cea029fd13919e574f |
|
BLAKE2b-256 | b4049134b2f9ecefc7270e48bbb36099d1beae9a7937cf79e6a4ba2bb6aa4706 |