Skip to main content

Pytorch implementation of 'Improved Denoising Diffusion Probabilistic Models', 'Denoising Diffusion Probabilistic Models' and 'Classifier-free Diffusion Guidance'

Project description

DDPMs Pytorch Implementation

Pytorch implementation of "Improved Denoising Diffusion Probabilistic Models", "Denoising Diffusion Probabilistic Models" and "Classifier-free Diffusion Guidance"

Install

pip install ddpm

Usage

Gaussian plain DDPM

from ddpm import GaussianDDPM, UNetTimeStep
from ddpm.variance_scheduler import LinearScheduler

T = 1_000
width = 32
height = 32
channels = 3

# Create a Gaussian DDPM with 1000 noise steps
scheduler = LinearScheduler(T=T, beta_start=1e-5, beta_end=1e-2)
denoiser = UNetTimeStep(channels=[3, 128, 256, 256, 384],
                        kernel_sizes=[3, 3, 3, 3],
                        strides=[1, 1, 1, 1],
                        paddings=[1, 1, 1, 1],
                        p_dropouts=[0.1, 0.1, 0.1, 0.1],
                        time_embed_size=100, 
                        downsample=True)
model = GaussianDDPM(denoiser, T, scheduler, vlb=False, lambda_variational=1.0, width=width, 
                     height=height, input_channels=channels, logging_freq=1_000)  # pytorch lightning module

Gaussian "Improved" DDPM

from ddpm import GaussianDDPM, UNetTimeStep
from ddpm.variance_scheduler import CosineScheduler

T = 1_000
width = 32
height = 32
channels = 3

# Create a Gaussian DDPM with 1000 noise steps
scheduler = CosineScheduler(T=T)
denoiser = UNetTimeStep(channels=[3, 128, 256, 256, 384],
                        kernel_sizes=[3, 3, 3, 3],
                        strides=[1, 1, 1, 1],
                        paddings=[1, 1, 1, 1],
                        p_dropouts=[0.1, 0.1, 0.1, 0.1],
                        time_embed_size=100, 
                        downsample=True)
model = GaussianDDPM(denoiser, T, scheduler, vlb=True, lambda_variational=0.0001, width=width, 
                     height=height, input_channels=channels, logging_freq=1_000)  # pytorch lightning module

Classifier-free Diffusion Guidance

from ddpm import GaussianDDPMClassifierFreeGuidance, UNetTimeStep
from ddpm.variance_scheduler import CosineScheduler

T = 1_000
width = 32
height = 32
channels = 3
num_classes = 10

# Create a Gaussian DDPM with 1000 noise steps
scheduler = CosineScheduler(T=T)
denoiser = UNetTimeStep(channels=[3, 128, 256, 256, 384],
                        kernel_sizes=[3, 3, 3, 3],
                        strides=[1, 1, 1, 1],
                        paddings=[1, 1, 1, 1],
                        p_dropouts=[0.1, 0.1, 0.1, 0.1],
                        time_embed_size=100, 
                        downsample=True)
model = GaussianDDPMClassifierFreeGuidance(denoiser, T, w=0.3, v=0.2, variance_scheduler=scheduler, width=width, 
                                           height=height, input_channels=channels, logging_freq=1_000, p_uncond=0.2, 
                                           num_classes=num_classes)  # pytorch lightning module

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ddpm-1.0.0.tar.gz (16.8 kB view details)

Uploaded Source

Built Distribution

ddpm-1.0.0-py3-none-any.whl (4.2 kB view details)

Uploaded Python 3

File details

Details for the file ddpm-1.0.0.tar.gz.

File metadata

  • Download URL: ddpm-1.0.0.tar.gz
  • Upload date:
  • Size: 16.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ddpm-1.0.0.tar.gz
Algorithm Hash digest
SHA256 2f9ae18dd4a54dc9a2f7decfca278d784293760900750c044c32ae63a9be4b6b
MD5 e4c02fb926e9128669ed61f6f9d40dcb
BLAKE2b-256 1372c3a6b712c36536b6616ccb8dbf9167e316e8a1e0601eaf172bb5618c3282

See more details on using hashes here.

File details

Details for the file ddpm-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: ddpm-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 4.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for ddpm-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 256a3680c6b2f96bf764fa40d2ea831449f4fb345e97cb91856350d0ddfeba5d
MD5 ec95037088db35427d89ea72c90d27bf
BLAKE2b-256 88a36282701ceab7a8d80e9eada1d5a8e944a82706cf7e70b338b55552fe7161

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page