Skip to main content

A utility package to scaffold PyTorch's DDP

Project description

DDPW

AWS S3 Conda PyPI

Publish documentation to AWS S3 Publish to Anaconda Publish to PyPI


Distributed Data Parallel Wrapper (DDPW) is created as a utility package to encapsulate the scaffolding for PyTorch's Distributed Data Parallel.

This code is written in Python. The DDPW documentation contains details on how to use this package.

Overview

Installation

conda install -c tvsujal ddpw # with conda
pip install ddpw # with pip from PyPI

Usage

from ddpw.platform import Platform, PlatformConfig
from ddpw.artefacts import ArtefactsConfig
from ddpw.job import JobConfig, JobMode
from ddpw.wrapper import Wrapper

from src import MyDataset, MyModel, MyOptimiser, MyTrainer

# datasets
train_set = MyDataset(train=True)
test_set = MyDataset(train=False)

# configure the platform
p_config = PlatformConfig(platform=Platform.GPU, n_gpus=4, cpus_per_task=2)

# configure the artefacts (model, dataset, optimiser, etc.)
a_config = ArtefactsConfig(train_set=train_set, test_set=test_set,
    batch_size=64, model=MyModel(), optimiser_loader=MyOptimiser(lr=0.1))

# call the job
Wrapper(p_config, a_config).start(MyTrainer())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ddpw-4.0.0.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

ddpw-4.0.0-py3-none-any.whl (12.7 kB view details)

Uploaded Python 3

File details

Details for the file ddpw-4.0.0.tar.gz.

File metadata

  • Download URL: ddpw-4.0.0.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for ddpw-4.0.0.tar.gz
Algorithm Hash digest
SHA256 3ffc4313585986f60f4cf25017b3c539b3edb22fd72181d03f465d2b0c2f0161
MD5 a7371b817121bd18d3d0f53dcb393919
BLAKE2b-256 07b0be54cd9e0e072a5c2ff7ff179e171a5ab8ffb955a12595bad5ea97d265dd

See more details on using hashes here.

File details

Details for the file ddpw-4.0.0-py3-none-any.whl.

File metadata

  • Download URL: ddpw-4.0.0-py3-none-any.whl
  • Upload date:
  • Size: 12.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for ddpw-4.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bc4e5f2ee96b29637a5c057c941a4e76e543b97dd2ce93064c7107e4dee3c4ee
MD5 12c4eba95d5593286a52e28ffc452d55
BLAKE2b-256 5e34200c5d1ebb0bba6d4aba40642a5d6be9af3a4ffe3c258cc373fb52c8fcc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page