Skip to main content

Python library for tracing graphql calls with Datadog

Project description

Python library to trace graphql calls with Datadog.


ddtrace-graphql is tested with:

  • Python versions: 3.5, 3.6, nightly
  • graphql-core: 2.0, 1.1.0, latest
  • ddtrace: 0.11.1, 0.10.1, latest

Screenshots for pyramid app serving GraphQL with tracing enabled:


GraphQL service detail.


GraphQL query detail.


Using pip

$ pip install ddtrace-graphql

From source

$ git clone
$ cd ddtrace-graphql && python install


To trace all GraphQL requests patch the library. Put this snippet to your application main entry point.


# OR

from ddtrace_graphql import patch

Check out the datadog trace client for all supported libraries and frameworks.


For the patching to work properly, patch needs to be called before any other imports of the graphql function.

# app/

# from that point all calls to graphql are traced
from graphql import graphql
result = graphql(schema, query)

Trace only certain calls with traced_graphql function

from ddtrace_graphql import traced_graphql
traced_graphql(schema, query)


Environment variables

 Define service name under which traces are shown in Datadog. Default value is graphql
$ export DDTRACE_GRAPHQL_SERVICE=foobar.graphql


Default arguments passed to the tracing context manager can be updated using span_kwargs argument of ddtrace_graphql.patch or ddtrace_graphql.traced_graphql functions.

Default values:

name:Wrapped resource name. Default graphql.graphql.
span_type:Span type. Default graphql.
service:Service name. Defaults to DDTRACE_GRAPHQL_SERVICE environment variable if present, else graphql.
resource:Processed resource. Defaults to query / mutation signature.

For more information visit ddtrace.Tracer.trace documentation.

from ddtrace_graphql import patch
from ddtrace_graphql import traced_graphql
traced_graphql(schema, query, span_kwargs=dict(resource='bar.resource'))


In case you want to postprocess trace span you may use span_callback argument. span_callback must be function with signature def callback(result=result, span=span) where result is graphql execution result or None in case of fatal error and span is trace span object (ddtrace.span.Span).

What is it good for? Unfortunately one cannot filter/alarm on span metrics resp. meta information even if those are numeric (why Datadog?) so you can use it to send metrics based on span, result attributes.

from datadog import statsd
from ddtrace_graphql import patch, CLIENT_ERROR, INVALID

def callback(result, span):
    tags = ['resource:{}'.format(span.resource.replace(' ', '_'))]
    statsd.increment('{}.request'.format(span.service), tags=tags)
    if span.error:
        statsd.increment('{}.error'.format(span.service), tags=tags)
    elif span.get_metric(CLIENT_ERROR):
        statsd.increment('{}.{}'.format(span.service, CLIENT_ERROR), tags=tags)
    if span.get_metric(INVALID):
        statsd.increment('{}.{}'.format(span.service, INVALID), tags=tags)



Some frameworks use exceptions to handle 404s etc. you may want to ignore some exceptions resp. not consider them server error. To do this you can supply ignore_exceptions argument as list of exception classes to ignore. ignore_exceptions will be used in python’s isinstance thus you can ignore also using base classes.

from ddtrace_graphql import patch
patch(ignore_exceptions=(ObjectNotFound, PermissionsDenied))
from ddtrace_graphql import traced_graphql
    schema, query,
    ignore_exceptions=(ObjectNotFound, PermissionsDenied))


Install from source in development mode

$ git clone
$ pip install --editable ddtrace-graphql[test]

Run tests

$ cd ddtrace-graphql
$ tox

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ddtrace-graphql, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size ddtrace_graphql-0.2.0-py3-none-any.whl (7.8 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size ddtrace-graphql-0.2.0.tar.gz (490.3 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page