No project description provided
Project description
Advanced Python & Linux Shell Commands: Project
Python package project
Description
This project has a python package de-transformation
code to make data transformations. The package consists of 3 functions:
- transpose2d
- window1d
- convolution2d
transpose2d
Description
Transposes a 2D matrix.
Parameters
input_matrix
(list[list[float]]): The input 2D matrix to be transposed.
Return Value
list[list[float]]
: The transposed 2D matrix, where rows become columns and columns become rows.
Example
from transformation import transpose2d
# Example input matrix
input_matrix = [[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]]
# Transpose the matrix
transposed_matrix = transpose2d(input_matrix)
# Output:
# transposed_matrix is now:
# [[1.0, 4.0],
# [2.0, 5.0],
# [3.0, 6.0]]
window1d
Description
Extracts window sub-arrays from a 1D list or numpy array, with the option to specify the size of the windows, the shift for the starting position of the window, and the stride between consecutive windows.
Parameters
input_array
(list or np.ndarray): The input 1D array or list from which windows are extracted.size
(int): The size of the windows to extract.shift
(int, optional): The number of elements to shift the starting position of the window (default is 1).stride
(int, optional): The step size between consecutive windows (default is 1).
Return Value
list of lists or np.ndarrays
: A list containing windows of the specified size extracted from the input array.
Example
from transformation import window1d
# Example input array
input_array = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# Extract windows of size 3 with a shift of 2
windows = window1d(input_array, size=3, shift=2)
# Output:
# windows is now:
# [[1, 2, 3],
# [3, 4, 5],
# [5, 6, 7],
# [7, 8, 9]]
convolution2d
Description
Performs 2D convolution on a numpy array using a specified convolution kernel and stride.
Parameters
input_matrix
(numpy.ndarray): The input 2D matrix to be convolved.kernel
(numpy.ndarray): The convolution kernel (filter) to apply.stride
(int, optional): The stride for the convolution operation (default is 1).
Return Value
numpy.ndarray
: The result of the 2D convolution operation, which is a numpy array.
Usage Example
from transformation import convolution2d
# Example input matrix
input_matrix = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# Example kernel
kernel = np.array([[1, 0],
[0, -1]])
# Perform 2D convolution
result = convolution2d(input_matrix, kernel)
# Output:
# result is now:
# [[ 1. -2.]
# [ -1. -2.]]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for de_transformation-0.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd8c0c15bac92a68d8d7015cfea4ee6ec793d4b8d8d7d8b215f5290cc7f6084e |
|
MD5 | b51365f86a8a11d7f82c747cafca4bb8 |
|
BLAKE2b-256 | 16ba042665bd392a3e9734d548787cb8d8f30847c27a482181a1b430d8cc81af |