Skip to main content

No project description provided

Project description

DEADBEATS

An easy to use Slack messaging library for research.

Usage

from deadbeats import DEADBEATS
# use environment variables implicitly
# SLACK_ACCESS_TOKEN=xxxx-xxxxxxxxxxxxx-xxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx (Get your own Slack API access token)
# SLACK_CHANNEL_ID=deadbeats (set slack channel id whatever you like!)


# or you can set configurations manually.
DEADBEATS.set_access_token("SLACK_ACCESS_TOKEN")
DEADBEATS.set_channel_id("SLACK_CHANNEL_ID")


# `DEADBEATS.wrap` sends a message at the beginning and end of the function.
# `DEADBEATS.wrap` catch every errors and raise it after sending a error message.
@DEADBEATS.wrap
def main():
    # A simple "heartbeating" message.
    DEADBEATS.ping()


    # You can add extra information like below.
    params = {"loss": 0.5, "val_loss": 1.6, "acc": 100.0}
    DEADBEATS.ping(text="message whatever you like", params=params, additional="info", huga="huga")


    # Start threading!
    # All subsequent messages will be sent to the thread.
    DEADBEATS.start_thread()


    # If you want to stop threading, you can use this method.
    # This method reset "thread_ts" of a instance variable, which is a id of thread.
    DEADBEATS.reset_thread()

Research Usage with PyTorch Lightning


class MyModel(pl.LightningModule):

    ...

    def on_train_start(self):
        DEADBEATS.start_thread()

    ...

    def validation_epoch_end(self, outputs):
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()

        DEADBEATS.ping(val_loss = avg_loss, current_epoch = self.current_epoch)

        return {'val_loss': avg_loss}

    ...

    # custom training function
    @DEADBEATS.wrap
    def fit(self, trainer):
        trainer.fit(self)

The library is named after the wonderful work of Mori Calliope, DEAD BEATS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deadbeats-0.2.3.tar.gz (3.0 kB view details)

Uploaded Source

Built Distribution

deadbeats-0.2.3-py3-none-any.whl (3.1 kB view details)

Uploaded Python 3

File details

Details for the file deadbeats-0.2.3.tar.gz.

File metadata

  • Download URL: deadbeats-0.2.3.tar.gz
  • Upload date:
  • Size: 3.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0

File hashes

Hashes for deadbeats-0.2.3.tar.gz
Algorithm Hash digest
SHA256 f4f18771cf0cce06215e998732f29e199f7fd4ec134925dc407f960d57db8c97
MD5 68e9a68f401558dfe43e059ec22ccccf
BLAKE2b-256 b7a5e74062dc3f35c32a1f4267b6cdb65a57169e8874efe16cdabefd34d46d30

See more details on using hashes here.

File details

Details for the file deadbeats-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: deadbeats-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 3.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0

File hashes

Hashes for deadbeats-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 858a175db6eb52a5f0831fd1608811b8177670d11b9163fa0f4344724a27847d
MD5 65fca48f98369a354f0adc92e13f4030
BLAKE2b-256 574782434e090bd739b566dba02cc4bddd2d50810e887323a0acf277b9383e1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page