Skip to main content

No project description provided

Project description

DEADBEATS

An easy to use Slack messaging library for research.

Usage

from deadbeats import DEADBEATS
# set environment variables as below
# SLACK_ACCESS_TOKEN=xxxx-xxxxxxxxxxxxx-xxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx (Get your own Slack API access token)
# SLACK_CHANNEL_ID=deadbeats (set slack channel id whatever you like!)


# or you can set configurations manually.
DEADBEATS.set_access_token("SLACK_ACCESS_TOKEN")
DEADBEATS.set_channel_id("SLACK_CHANNEL_ID")


# `DEADBEATS.wrap` sends a message at the beginning and end of the function.
# `DEADBEATS.wrap` catch every errors and raise it after sending a error message.
@DEADBEATS.wrap
def main():
    # A simple "heartbeating" message.
    DEADBEATS.ping()


    # Start threading!
    # All subsequent messages will be sent to the thread.
    DEADBEATS.start_thread()


    # You can add extra information like below.
    params = {"loss": 0.5, "val_loss": 1.6, "acc": 100.0}
    DEADBEATS.ping(text="message whatever you like", params=params, additional="info", huga="huga")


    # If you want to stop threading, you can use this method.
    # This method reset "thread_ts" of a instance variable, which is a id of thread.
    DEADBEATS.reset_thread()

With PyTorch Lightning

from deadbeats import DEADBEATS

class MyModel(pl.LightningModule):

    ...

    def on_train_start(self):
        DEADBEATS.start_thread()

    ...

    def validation_epoch_end(self, outputs):
        avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()

        DEADBEATS.ping(val_loss = avg_loss, current_epoch = self.current_epoch)

        return {'val_loss': avg_loss}

    ...

    # custom training function
    @DEADBEATS.wrap
    def fit(self, trainer):
        trainer.fit(self)

messages like below

example

This library is named after the wonderful work of Mori Calliope, DEAD BEATS, and inspired by hugginface/knockknock.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deadbeats-0.3.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

deadbeats-0.3.1-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file deadbeats-0.3.1.tar.gz.

File metadata

  • Download URL: deadbeats-0.3.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0

File hashes

Hashes for deadbeats-0.3.1.tar.gz
Algorithm Hash digest
SHA256 8da4e7fe9e18526ed7244e798daafdaca559c6dde46c2770272fe4f0b6d194d8
MD5 44d10ecf57767062889943028a07a820
BLAKE2b-256 167555edb5004d7766e418b725fd52d34047e4b9d6bdcb4db00a3f912fa9d09e

See more details on using hashes here.

File details

Details for the file deadbeats-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: deadbeats-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0

File hashes

Hashes for deadbeats-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 99295b2e48c925795b2e555bbb0d8a0c54f192c16db813588acf09e0a165a872
MD5 cf1c5721d49d0fc6a19d2b62998c83e9
BLAKE2b-256 51574e39be5ddd675e549ab8366379e39233ca338fe3d08292393098887e5111

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page