No project description provided
Project description
DEADBEATS
An easy to use Slack messaging library for research.
Usage
from deadbeats import DEADBEATS
# set environment variables as below
# SLACK_ACCESS_TOKEN=xxxx-xxxxxxxxxxxxx-xxxxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx (Get your own Slack API access token)
# SLACK_CHANNEL_ID=deadbeats (set slack channel id whatever you like!)
# or you can set configurations manually.
DEADBEATS.set_access_token("SLACK_ACCESS_TOKEN")
DEADBEATS.set_channel_id("SLACK_CHANNEL_ID")
# `DEADBEATS.wrap` sends a message at the beginning and end of the function.
# `DEADBEATS.wrap` catch every errors and raise it after sending a error message.
@DEADBEATS.wrap
def main():
# A simple "heartbeating" message.
DEADBEATS.ping()
# Start threading!
# All subsequent messages will be sent to the thread.
DEADBEATS.start_thread()
# You can add extra information like below.
params = {"loss": 0.5, "val_loss": 1.6, "acc": 100.0}
DEADBEATS.ping(text="message whatever you like", params=params, additional="info", huga="huga")
# If you want to stop threading, you can use this method.
# This method reset "thread_ts" of a instance variable, which is a id of thread.
DEADBEATS.reset_thread()
With PyTorch Lightning
from deadbeats import DEADBEATS
class MyModel(pl.LightningModule):
...
def on_train_start(self):
DEADBEATS.start_thread()
...
def validation_epoch_end(self, outputs):
avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
DEADBEATS.ping(val_loss = avg_loss, current_epoch = self.current_epoch)
return {'val_loss': avg_loss}
...
# custom training function
@DEADBEATS.wrap
def fit(self, trainer):
trainer.fit(self)
messages like below
This library is named after the wonderful work of Mori Calliope, DEAD BEATS, and inspired by hugginface/knockknock.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deadbeats-0.3.2.tar.gz
(3.9 kB
view details)
Built Distribution
File details
Details for the file deadbeats-0.3.2.tar.gz
.
File metadata
- Download URL: deadbeats-0.3.2.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42fd05d20ceb7fa6b3a24d78055dd1d7658ce2091493371665624a749c799e3e |
|
MD5 | 483a96ab27368a29c741b2d9a0fb1f25 |
|
BLAKE2b-256 | a2c5fa18281d87b4206860999672877a464f802043190cec30e1541e45180c6a |
File details
Details for the file deadbeats-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: deadbeats-0.3.2-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.0.5 CPython/3.8.2 Darwin/19.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 578240251cd8eee2061d61fdfaece9c74a71e73b3bcf6eb464960cdce461671f |
|
MD5 | 6b91b4a9d516a53381bec9f5bce99e77 |
|
BLAKE2b-256 | 3d175bb68208c4cab0fad97abef53162064a0bdb2017cac76f244b7427793eb7 |