Skip to main content

DealStat Utilities

Project description

=================
DealStat Utilities
=================


.. image:: https://img.shields.io/pypi/v/dealstat.svg
:target: https://pypi.python.org/pypi/dealstat

.. image:: https://img.shields.io/travis/ecatkins/dealstat.svg
:target: https://travis-ci.org/ecatkins/dealstat

.. image:: https://readthedocs.org/projects/dealstat/badge/?version=latest
:target: https://dealstat.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status


.. image:: https://pyup.io/repos/github/ecatkins/dealstat/shield.svg
:target: https://pyup.io/repos/github/ecatkins/dealstat/
:alt: Updates



DealStat Utilities


* Free software: MIT license

Dealstat
--------
Generic functions that may be moved to specific modules at some point:::

from dealstat.dealstat import *

# generate random letter based ID of given length
my_id = unique_id(30)


Boto
--------
Simplifies some of AWS' Boto3 functionality (at the moment, just S3)

* First save `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` as environment variables::

from dealstat.boto import Boto
s3 = Boto('s3')

location1 = {'bucket':'<some-bucket>', 'key': '<some-key'>}
location2 = {'bucket':'<some-other-bucket>', 'key': '<some-other-key'>}

# Get temporary pre-signed url
url = s3.get_temp_url(location1)

# Move object from one bucket/key to another
s3.move_object(location1, location2)

# Upload file
file_path = '/some/file/path.txt'
s3.upload_file(file_path, location1)

# Download file
destination_file_path = 'local/file/path2.txt'
s3.download_file(destination_file_path, location2)

# List contents of bucket
# Use prefix='some-prefix' to search for specific key prefixes
# Use exclude_dirs=True to not return directories in result
s3.list_bucket('<some-bucket'>, prefix=None, exclude_dirs=True)

Machine Learning
--------
Random utilities useful in ML prototyping

* Download and use Standform NLP Glove Embedings ::

from dealstat.ml import Embeddings

Embed = Embeddings()

# Download embeddings
Embed.download_embeddings()

# Unzip embeddings
Embed.extract_embeddings()

# Generate embeddings look up dict for given dimension
dim = 200
embedding_dict = Embed.generate(loc='.', dim=dim)





Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2018-08-23)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dealstat, version 0.1.5
Filename, size File type Python version Upload date Hashes
Filename, size dealstat-0.1.5-py2.py3-none-any.whl (7.6 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size dealstat-0.1.5-py3.6.egg (11.6 kB) File type Egg Python version 3.6 Upload date Hashes View
Filename, size dealstat-0.1.5.tar.gz (12.9 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page