Skip to main content

Distributed Evolutionary Algorithms in Python

Project description

DEAP

Build status Download Join the chat at https://gitter.im/DEAP/deap Build Status Documentation Status

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and SCOOP.

DEAP includes the following features:

  • Genetic algorithm using any imaginable representation
    • List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  • Genetic programming using prefix trees
    • Loosely typed, Strongly typed
    • Automatically defined functions
  • Evolution strategies (including CMA-ES)
  • Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)
  • Co-evolution (cooperative and competitive) of multiple populations
  • Parallelization of the evaluations (and more)
  • Hall of Fame of the best individuals that lived in the population
  • Checkpoints that take snapshots of a system regularly
  • Benchmarks module containing most common test functions
  • Genealogy of an evolution (that is compatible with NetworkX)
  • Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

Downloads

Following acceptance of PEP 438 by the Python community, we have moved DEAP's source releases on PyPI.

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

Documentation

See the DEAP User's Guide for DEAP documentation.

In order to get the tip documentation, change directory to the doc subfolder and type in make html, the documentation will be under _build/html. You will need Sphinx to build the documentation.

Notebooks

Also checkout our new notebook examples. Using Jupyter notebooks you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

jupyter notebook

Installation

We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.

pip install deap

The latest version can be installed with

pip install git+https://github.com/DEAP/deap@master

If you wish to build from sources, download or clone the repository and type

python setup.py install

Build Status

DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

Requirements

The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3. The installation procedure automatically translates the source to Python 3 with 2to3, however this requires having setuptools<=58. It is recommended to use pip install setuptools==57.5.0 to address this issue.

Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP. More examples are provided here.

import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)

How to cite DEAP

Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}

Publications on DEAP

  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. Paper
  • Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. Paper
  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. Paper

Projects using DEAP

  • Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  • Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  • S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  • B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  • Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  • Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  • Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  • Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  • Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  • Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  • Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  • J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  • V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  • M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012.
  • M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  • M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  • Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  • Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  • DEAP is used in TPOT, an open source tool that uses genetic programming to optimize machine learning pipelines.
  • DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  • DEAP is an optional dependency for PyXRD, a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  • DEAP is used in glyph, a library for symbolic regression with applications to MLC.
  • DEAP is used in Sklearn-genetic-opt, an open source tool that uses evolutionary programming to fine tune machine learning hyperparameters.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deap-1.4.1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

deap-1.4.1-cp310-cp310-win_amd64.whl (109.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

deap-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

deap-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

deap-1.4.1-cp310-cp310-macosx_11_0_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

deap-1.4.1-cp39-cp39-win_amd64.whl (109.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

deap-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

deap-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

deap-1.4.1-cp39-cp39-macosx_11_0_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

deap-1.4.1-cp38-cp38-win_amd64.whl (104.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

deap-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

deap-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

deap-1.4.1-cp38-cp38-macosx_11_0_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

deap-1.4.1-cp37-cp37m-win_amd64.whl (104.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

deap-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (134.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

deap-1.4.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

deap-1.4.1-cp37-cp37m-macosx_11_0_x86_64.whl (104.7 kB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

deap-1.4.1-cp36-cp36m-win_amd64.whl (104.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

deap-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (134.9 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

deap-1.4.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

deap-1.4.1-cp36-cp36m-macosx_10_14_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file deap-1.4.1.tar.gz.

File metadata

  • Download URL: deap-1.4.1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for deap-1.4.1.tar.gz
Algorithm Hash digest
SHA256 cc01de9892dfa7d1bc9803dab28892fead177f0182c81db47360a240ead778ff
MD5 98cbd5e67cf24c2bb3f23d2311fefa85
BLAKE2b-256 0c4c350b7a2a16a4ed3b547172a7d2ca328e5376466a419bf90102ceb290ac5c

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 109.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for deap-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6a45dece5a7a8dbdb13040d182400e735ee2dd78049d02bfa7d8c30079adfb84
MD5 50f1d7f5629a85a9d741a84bcd20aa77
BLAKE2b-256 386ce240099dc857d38ec9e0eca7c020c3e18274a873e0f2ac3004e3b8783156

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a81c3c3c7c429f1cab1266efc5ca34ad035899014f70c5b5d4cca927c2af0088
MD5 0a8bfa087ec7f465e2a3ab7e01067173
BLAKE2b-256 23166d724a92c4d24a32274730eb9517000e956649c5d0068b06ad31ecdd9c51

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c96f8ba1a20d66361f9cc05a0727dd0858811ebcc64d85c063d12051e9f1c6c1
MD5 2dabfa012ec5bae3e8db1b40a1521919
BLAKE2b-256 2ec9db3d645fdcd9054f484c5b582c3b6b0a2a34270e54edca9dde47661db251

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f63d783f61536ea277055c92f668da820297901a0a594f9a367814292278a891
MD5 766fd6c1845859de88d2cc6d74809de1
BLAKE2b-256 4037c8cfa753cb62ccb1618090fcbd9d9666b45d8df5a59ef346b73552352bd7

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 109.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for deap-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ccff7486cafe985815c74995d76749bae68d66e7cf666a4aa40eabc07d59e86e
MD5 85fc40519d8938988ef1aad002956844
BLAKE2b-256 3854f6fb5360ddeecd231cf1743b446792498000f25b27fa4c95693a4e22bccc

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64767d124eeac5223954df83ec5c7c2b7af8035d5a94cf388d1d8fd00e797e49
MD5 72f6743adb71d6730bc33ee6c5c48a78
BLAKE2b-256 1a3f978f54b111860369ab59f23350650061a2ccb2f9b23d69a491d3b9a6bb41

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51f7963f90a4a716254db16c0ae75bbcf1fdf062d191c6f1488014d9a61c5c19
MD5 79ebb0555c439efd3b1bebe2daf4ec70
BLAKE2b-256 234590610df78aedf2922cbb8ba8bf0683c88e4ed565ccd53d62ea178961fcb0

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 c7f4b158fe02bc768aab00abae0fe5b090903de010f805c25966dbb4f78b01bb
MD5 e2694d7cac2e4179715f5287225e967b
BLAKE2b-256 2c1bb05fffa328b84c8d5e8f817761bea1e411f0aa5e2b845526cb635aaae5c7

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 104.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for deap-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0209328a0c0928653d4947dffcf747e8b7c7b87ab63495a84f8c5c3963fad08d
MD5 7b5cac65709eec9ae30bd4de82066c5e
BLAKE2b-256 fb2e88ff18c36df6f720b859a823b3ea3e5e711508456099035b7379f65bca8a

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b86428ea2b09696e284bdb9b889e7c73b244a8d94b004e4a787df364f307101
MD5 f85e7a4d914b6a17dd14a056cbb3ec30
BLAKE2b-256 8f62b0f8c0270fe2342c53fe17870ffb456ab5ff9371205f0a35fd678fcb4d60

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31647fcbc1736127eec8495a25313e823d230844265fdcd254e076e05574bb62
MD5 a4a68569b2e87c29e49241fc1682dfa4
BLAKE2b-256 3643b591031b0600d31134d4e8d0abd6533be0c004f2ed3b195c9953f3cd5572

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 bae8aab5db32652d248f6ec51adccae4cf58b09a49d86279a195bbaeb489576a
MD5 150544df83b4b5dc49af112e557e9ae5
BLAKE2b-256 050ea76a72d580716d26b9475bc0abf1294659baa4958154ce21aafebf52bccb

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 104.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.9

File hashes

Hashes for deap-1.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1c20f3e64240757a7f2b1e11fafa523dba26237869e19a2428baaf3c218cea2f
MD5 c6c2c4f7ce6f52ac786fff772b0c5a6b
BLAKE2b-256 bc01c3d2234b49edeed16766c2c511884a6a6939d5e94820bae3f8928d8e9fa5

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d81640a8bf7c3f5ef85b9592d3c79ce4a467bdbb4e6c56aeb895637609b5958
MD5 622c9865f669ecd02e40da82bc60154f
BLAKE2b-256 943c2c796ce48ee2409fc3bfbd8dfdeb280d22b0e68e413f75fd482704927f65

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42cd45c2080b364b8949649b012bff14f0543de48590aa2a43096762db85b099
MD5 52196bacc48f404b0ddb8dd0c18026f3
BLAKE2b-256 8e9862a5832cb7fd0c7f97af6533c021436198cd210c42102db3d68f0aa134a8

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 493a409a56be1a45027f0d6feb1080fbab284a4d2b14156f482c9e4ad2f6784f
MD5 1fd5263f82683d0fd872e16ea9857f0d
BLAKE2b-256 e2499479e8c2221f9edee2b5c6a4d7286275941ab1673245d486b5291d4e660b

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 104.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for deap-1.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 379f6ce86da66c8692358db2e83bbfb97404be3daba1a3b860e5b78a97f5b6c3
MD5 b78273481073e7f43b4db67da80d7d97
BLAKE2b-256 4a3db8bdde9a8add8b07fff482e3ad5e4d14233472a51afbe8e49dfb3b4f3b50

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: deap-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 134.9 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for deap-1.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e07d1a16c4aefb940e6f97e92ff2facc7a6916cc2c8350593f9e37cb0b8a75d0
MD5 442a242b425211257a6aee1754c0db8a
BLAKE2b-256 7fdbdc48000be6db70f86a32df4060a4f1063087d4fb479fa2dc8f5671507dec

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e93e3a2e6c47a3053d0e8d26a226d788fc98d853beba19b8310003300028b826
MD5 bd16289132972362cb62c0ef2ae62911
BLAKE2b-256 fcd7da3805b31d16399d190760b20afc0c6cfd5bee4fb3a24d20ba11d5d1a356

See more details on using hashes here.

File details

Details for the file deap-1.4.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: deap-1.4.1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 104.6 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/1.0.0 urllib3/1.26.16 tqdm/4.64.1 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for deap-1.4.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f759e3b056e55a2eb9e095b02fff4f7cf84c119ce90ea243673f3f666636179
MD5 984422c62d66177781a4cd903ea32510
BLAKE2b-256 b7c4d11f7a159e9fe73ea4dbc8403356a6d86b4ea083d13a1693fd4de59c5b41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page