Skip to main content

Distributed Evolutionary Algorithms in TensorFlow (DEATF) is a framework where networks generated with TensorFlow are evolved via DEAP.

Project description

DEATF

[Python] TensorFlow DEAP

Distributed Evolutionary Algorithms in TensorFlow (DEATF) is a framework where networks generated with TensorFlow [1] are evolved via DEAP [2]. DEATF is a framework directly based in EvoFlow [3] framework created by Unai Garciarena.

Installation

DEATF has available an easy installation with pip.

pip install deap

Requirements

TensorFlow DEAP NumPy Tensorflow-database ScikitLearn Pandas

Example

The easiest example of this library (taken from simple.py in the examples folder), where every used parameter is predifined is the following one:

import numpy as np

from deatf.auxiliary_functions import load_fashion
from deatf.network import MLPDescriptor
from deatf.evolution import Evolving

from sklearn.preprocessing import OneHotEncoder

x_train, y_train, x_test, y_test, x_val, y_val = load_fashion()

OHEnc = OneHotEncoder()

y_train = OHEnc.fit_transform(np.reshape(y_train, (-1, 1))).toarray()
y_test = OHEnc.fit_transform(np.reshape(y_test, (-1, 1))).toarray()
y_val = OHEnc.fit_transform(np.reshape(y_val, (-1, 1))).toarray()

e = Evolving(evaluation="XEntropy", desc_list=[MLPDescriptor], compl=False,
         x_trains=[x_train], y_trains=[y_train], x_tests=[x_val], y_tests=[y_val], 
         n_inputs=[[28, 28]], n_outputs=[[10]], batch_size=150, iters=10, 
         population=15, generations=10, max_num_layers=10, max_num_neurons=20,
         seed=0, dropout=False, batch_norm=False, evol_alg='mu_plus_lambda',
         evol_kwargs={'mu':10, 'lambda_':15, 'cxpb':0., "mutpb": 1.},
         sel = 'best')

a = e.evolve()

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

[2] Fortin, F. A., Rainville, F. M. D., Gardner, M. A., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(Jul), 2171-2175.

[3] Garciarena, U., Santana, R., & Mendiburu, A. (2018, July). Evolved GANs for generating Pareto set approximations. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 434-441). ACM.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deatf-0.2.tar.gz (27.0 kB view details)

Uploaded Source

Built Distribution

deatf-0.2-py3-none-any.whl (27.1 kB view details)

Uploaded Python 3

File details

Details for the file deatf-0.2.tar.gz.

File metadata

  • Download URL: deatf-0.2.tar.gz
  • Upload date:
  • Size: 27.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for deatf-0.2.tar.gz
Algorithm Hash digest
SHA256 eb6fa84e80a478d3f8d4f244869280eac4359a0d0982fa778c3d759b0747abac
MD5 9c920356c0bb2e9724f34609b3904c31
BLAKE2b-256 e9f99a9c69c278b3f374bed73bc107cdc2e57f0838163892951dd606eeb59646

See more details on using hashes here.

File details

Details for the file deatf-0.2-py3-none-any.whl.

File metadata

  • Download URL: deatf-0.2-py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for deatf-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6a54b72665f28dba9e0833f5305b0ebaebcd7d727bf419551e08bb3913929b68
MD5 0bc3e645d87e95690f407bd832079d5f
BLAKE2b-256 db32ab680742e16e888b28103d2b60737052649d7d35660d7070389be4450d06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page