Distributed Evolutionary Algorithms in TensorFlow (DEATF) is a framework where networks generated with TensorFlow are evolved via DEAP.
Project description
DEATF
Distributed Evolutionary Algorithms in TensorFlow (DEATF) is a framework where networks generated with TensorFlow [1] are evolved via DEAP [2]. DEATF is a framework directly based in EvoFlow [3] framework created by Unai Garciarena.
Installation
DEATF has available an easy installation with pip.
pip install deap
Documentation
In order to facilitate the use of DEATF, there is a User's Guide with the information of all classes, functions and examples provided by the library.
Requirements
DEATF requires a Python version between 3.5 and 3.8. It also depends from other libraries, these are the requirements to use it correctly:
- TensorFlow (v2.0 or greater)
- Numpy
- DEAP
- Tensorflow-datasets
- Scikit-learn
- Pandas
Example
The easiest example of this library (taken from simple.py in the examples folder), where every used parameter is predifined is the following one:
import numpy as np
from deatf.auxiliary_functions import load_fashion
from deatf.network import MLPDescriptor
from deatf.evolution import Evolving
from sklearn.preprocessing import OneHotEncoder
x_train, y_train, x_test, y_test, x_val, y_val = load_fashion()
OHEnc = OneHotEncoder()
y_train = OHEnc.fit_transform(np.reshape(y_train, (-1, 1))).toarray()
y_test = OHEnc.fit_transform(np.reshape(y_test, (-1, 1))).toarray()
y_val = OHEnc.fit_transform(np.reshape(y_val, (-1, 1))).toarray()
e = Evolving(evaluation="XEntropy", desc_list=[MLPDescriptor], compl=False,
x_trains=[x_train], y_trains=[y_train], x_tests=[x_val], y_tests=[y_val],
n_inputs=[[28, 28]], n_outputs=[[10]], batch_size=150, iters=10,
population=15, generations=10, max_num_layers=10, max_num_neurons=20,
seed=0, dropout=False, batch_norm=False, evol_alg='mu_plus_lambda',
evol_kwargs={'mu':10, 'lambda_':15, 'cxpb':0., "mutpb": 1.},
sel = 'best')
a = e.evolve()
More complex cases can be created, an example of it (without being to complex) is sequential.py. In this second example, the evaluation function is not predefined; instead it is defined by the user in eval_sequential function. With this option, user can decide how to evaluate the created models.
import tensorflow as tf
import numpy as np
from deatf.auxiliary_functions import accuracy_error, load_fashion
from deatf.network import MLPDescriptor
from deatf.evolution import Evolving
from tensorflow.keras.layers import Input, Flatten
from tensorflow.keras.models import Model
import tensorflow.keras.optimizers as opt
from sklearn.preprocessing import OneHotEncoder
optimizers = [opt.Adadelta, opt.Adagrad, opt.Adam]
def eval_sequential(nets, train_inputs, train_outputs, batch_size, iters, test_inputs, test_outputs, hypers):
inp = Input(shape=train_inputs["i0"].shape[1:])
out = Flatten()(inp)
out = nets["n0"].building(out)
out = nets["n1"].building(out)
model = Model(inputs=inp, outputs=out)
opt = optimizers[hypers["optimizer"]](learning_rate=hypers["lrate"])
model.compile(loss=tf.nn.softmax_cross_entropy_with_logits, optimizer=opt, metrics=[])
model.fit(train_inputs['i0'], train_outputs['o0'], epochs=iters, batch_size=batch_size, verbose=0)
pred = model.predict(test_inputs['i0'])
res = tf.nn.softmax(pred)
return accuracy_error(test_outputs["o0"], res),
x_train, y_train, x_test, y_test, x_val, y_val = load_fashion()
OHEnc = OneHotEncoder()
y_train = OHEnc.fit_transform(np.reshape(y_train, (-1, 1))).toarray()
y_test = OHEnc.fit_transform(np.reshape(y_test, (-1, 1))).toarray()
y_val = OHEnc.fit_transform(np.reshape(y_val, (-1, 1))).toarray()
e = Evolving(evaluation=eval_sequential, desc_list=[MLPDescriptor, MLPDescriptor],
x_trains=[x_train], y_trains=[y_train], x_tests=[x_val], y_tests=[y_val],
batch_size=150, population=10, generations=10, iters=10,
n_inputs=[[28, 28], [10]], n_outputs=[[10], [10]], cxp=0.5, mtp=0.5,
hyperparameters={"lrate": [0.1, 0.5, 1], "optimizer": [0, 1, 2]},
batch_norm=False, dropout=False)
a = e.evolve()
References
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
[2] Fortin, F. A., Rainville, F. M. D., Gardner, M. A., Parizeau, M., & Gagné, C. (2012). DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research, 13(Jul), 2171-2175.
[3] Garciarena, U., Santana, R., & Mendiburu, A. (2018, July). Evolved GANs for generating Pareto set approximations. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 434-441). ACM.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file deatf-0.3.tar.gz
.
File metadata
- Download URL: deatf-0.3.tar.gz
- Upload date:
- Size: 28.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce71e63f82d22dbaca4f0de7022e1e1c56380f675b46a40f4ca1e91ced0b9703 |
|
MD5 | 9ee845ae478d0257ab1a0bfc4360f376 |
|
BLAKE2b-256 | 2db6957e18984bdade4e2e19e2e8c1d58f81e2d250a06907748593f3d55c5c97 |
File details
Details for the file deatf-0.3-py3-none-any.whl
.
File metadata
- Download URL: deatf-0.3-py3-none-any.whl
- Upload date:
- Size: 27.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03cd0fd47ebb49d0b0e7a598338eab84d68fba6d2c0d9bae4b43139166acbd2b |
|
MD5 | 3d7b1fa8f210527f25310788890b6c3f |
|
BLAKE2b-256 | 6dd41f978820bd45cd2424818d3a08739b79c65c4cf36d76ccd9f0aaa87b0c2c |