Skip to main content

DEbiasing CAusal Fairness

Project description

DECAF (DEbiasing CAusal Fairness)

Tests License

Code Author: Trent Kyono and Boris van Breugel

This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks" paper(2021).

Installation

pip install -r requirements.txt
pip install .

Tests

You can run the tests using

pip install -r requirements_dev.txt
pip install .
pytest -vsx

Contents

  • decaf/DECAF.py - Synthetic data generator class - DECAF.
  • tests/run_example.py - Runs a nonlinear toy DAG example. The dag structure is stored in the dag_seed variable. The edge removal is stored in the bias_dict variable. See example usage in this file.

Examples

Base example on toy dag:

$ cd tests
$ python run_example.py

An example to run with a dataset size of 2000 for 300 epochs:

$ python run_example.py --datasize 2000 --epochs 300

Citing

@inproceedings{kyono2021decaf,
	title        = {DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks},
	author       = {van Breugel, Boris and Kyono, Trent and Berrevoets, Jeroen and van der Schaar, Mihaela},
	year         = 2021,
	booktitle    = {Conference on Neural Information Processing Systems(NeurIPS) 2021}
}


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

decaf_synthetic_data-0.1.6-py3-none-macosx_10_14_x86_64.whl (9.0 kB view details)

Uploaded Python 3 macOS 10.14+ x86-64

decaf_synthetic_data-0.1.6-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file decaf_synthetic_data-0.1.6-py3-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for decaf_synthetic_data-0.1.6-py3-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64a2be6dafdf3640d3347bb1966b484722cc9e266cdb66c99d0b6ad9a49242e3
MD5 4734b8b44cd95dfd96df8a1ff9e461dc
BLAKE2b-256 c67d84cb04a353b78b48d95a8832b273f938f931bc08320ea139bc4bb10a18c9

See more details on using hashes here.

File details

Details for the file decaf_synthetic_data-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for decaf_synthetic_data-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 dc51502f9f72b3fbdbef697238d72ae6b8457f76efc9763a747970ba543d4e0f
MD5 519a16da0147bebe7fd4a0fc7442a471
BLAKE2b-256 234e961e634a67007e3957ebf04a1d8efcd56313f7cfbaa23135d2f602650414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page