State of the art decentralized optimization library
Project description
Linearly Convergent Decentralized Learning with Arbitrary Communication Compression
How do I run the Code?
A. Install our package:
pip3 install decopt
(A.1) Often get the latest update:
pip3 install decopt --upgrade
B. Get Data:
sh pull_data.sh breast_cancer
c. Run script with default parameters:
python3 driver.py
With different parameters:
python3 driver.py --d 'mnist' --n_cores 10 --algorithms 'ours'
Parameter Options:
parser.add_argument('--d', type=str, default='breast_cancer',
help='Pass data-set')
parser.add_argument('--r', type=str, default=os.path.join(curr_dir, './data/'),
help='Pass data root')
parser.add_argument('--stochastic', type=bool, default=False)
parser.add_argument('--algorithm', type=str, default='ours')
parser.add_argument('--n_cores', type=int, default=9)
parser.add_argument('--topology', type=str, default='ring')
parser.add_argument('--Q', type=int, default=2)
parser.add_argument('--consensus_lr', type=float, default=0.3)
parser.add_argument('--quantization_function', type=str, default='full')
parser.add_argument('--num_bits', type=int, default=2)
parser.add_argument('--fraction_coordinates', type=float, default=0.1)
parser.add_argument('--dropout_p', type=float, default=0.1)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lr_type', type=str, default='constant')
parser.add_argument('--initial_lr', type=float, default=0.01)
parser.add_argument('--epoch_decay_lr', type=float, default=0.9)
parser.add_argument('--regularizer', type=float, default=0)
parser.add_argument('--estimate', type=str, default='final')
parser.add_argument('--n_proc', type=int, default=3, help='no of parallel processors for Multi-proc')
parser.add_argument('--n_repeat', type=int, default=3, help='no of times repeat exp with diff seed')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
decopt-2.0.8.tar.gz
(8.5 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
decopt-2.0.8-py3-none-any.whl
(11.0 kB
view details)
File details
Details for the file decopt-2.0.8.tar.gz.
File metadata
- Download URL: decopt-2.0.8.tar.gz
- Upload date:
- Size: 8.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
34355d08e500e6d3c15ba4165178421c2aeed89873a5cd1d150df812e358118d
|
|
| MD5 |
5fcdafeabd9dc4ec765a99dde26d0b78
|
|
| BLAKE2b-256 |
a5d6cd1b37f985a3600927b655e6a5f945b34a484b49cd00624aced3f6e2ba25
|
File details
Details for the file decopt-2.0.8-py3-none-any.whl.
File metadata
- Download URL: decopt-2.0.8-py3-none-any.whl
- Upload date:
- Size: 11.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
280ec422d969d95841516da925f2e9f4c61c3637e9be8402d26150543c24456d
|
|
| MD5 |
a86a48be4428a59971d23cb26218178f
|
|
| BLAKE2b-256 |
5a21eae3c8e2092145da59b3b249af5617b7b4464a5e662c9127953dd2c7267c
|