Skip to main content

State of the art decentralized optimization library

Project description

Linearly Convergent Decentralized Learning with Arbitrary Communication Compression

How do I run the Code?

A. Install our package: 
pip3 install decopt

(A.1) Often get the latest update:
 pip3 install decopt --upgrade 

B. Get Data: 
sh pull_data.sh breast_cancer

c. Run script with default parameters: 
python3 driver.py

With different parameters:
python3 driver.py --d 'mnist' --n_cores 10 --algorithms 'ours'


Parameter Options:

parser.add_argument('--d', type=str, default='breast_cancer',
                        help='Pass data-set')
    parser.add_argument('--r', type=str, default=os.path.join(curr_dir, './data/'),
                        help='Pass data root')
    parser.add_argument('--stochastic', type=bool, default=False)
    parser.add_argument('--algorithm', type=str, default='ours')

    parser.add_argument('--n_cores', type=int, default=9)

    parser.add_argument('--topology', type=str, default='ring')
    parser.add_argument('--Q', type=int, default=2)
    parser.add_argument('--consensus_lr', type=float, default=0.3)

    parser.add_argument('--quantization_function', type=str, default='full')
    parser.add_argument('--num_bits', type=int, default=2)
    parser.add_argument('--fraction_coordinates', type=float, default=0.1)
    parser.add_argument('--dropout_p', type=float, default=0.1)

    parser.add_argument('--epochs', type=int, default=10)
    parser.add_argument('--lr_type', type=str, default='constant')
    parser.add_argument('--initial_lr', type=float, default=0.01)
    parser.add_argument('--epoch_decay_lr', type=float, default=0.9)
    parser.add_argument('--regularizer', type=float, default=0)

    parser.add_argument('--estimate', type=str, default='final')
    parser.add_argument('--n_proc', type=int, default=3, help='no of parallel processors for Multi-proc')
    parser.add_argument('--n_repeat', type=int, default=3, help='no of times repeat exp with diff seed')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

decopt-2.0.8.tar.gz (8.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

decopt-2.0.8-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file decopt-2.0.8.tar.gz.

File metadata

  • Download URL: decopt-2.0.8.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for decopt-2.0.8.tar.gz
Algorithm Hash digest
SHA256 34355d08e500e6d3c15ba4165178421c2aeed89873a5cd1d150df812e358118d
MD5 5fcdafeabd9dc4ec765a99dde26d0b78
BLAKE2b-256 a5d6cd1b37f985a3600927b655e6a5f945b34a484b49cd00624aced3f6e2ba25

See more details on using hashes here.

File details

Details for the file decopt-2.0.8-py3-none-any.whl.

File metadata

  • Download URL: decopt-2.0.8-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.4

File hashes

Hashes for decopt-2.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 280ec422d969d95841516da925f2e9f4c61c3637e9be8402d26150543c24456d
MD5 a86a48be4428a59971d23cb26218178f
BLAKE2b-256 5a21eae3c8e2092145da59b3b249af5617b7b4464a5e662c9127953dd2c7267c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page