Utils for automatic document images processing
Project description
dedoc-utils
This library contains useful utilities for automatic document images processing:
- Preprocessing
- binarization
- skew correction
- Text detection
- Line segmentation
- Text recognition
Installation
The library requires Tesseract OCR to be installed. To install the library use the following command:
pip install dedoc-utils
It's supposed that you already have torch
and torchvision
installed.
If not you can use the following command for installation:
pip install "dedoc-utils[torch]"
If you cloned the repository, you can install the dependencies via pip
:
pip install .
To install torch
packages use:
pip install ."[torch]"
Basic usage
Using preprocessors
from dedocutils.preprocessing import AdaptiveBinarizer, SkewCorrector
import cv2
import matplotlib.pyplot as plt
binarizer = AdaptiveBinarizer()
skew_corrector = SkewCorrector()
image = cv2.imread("examples/before_preprocessing.jpg")
binarized_image, _ = binarizer.preprocess(image)
preprocessed_image, _ = skew_corrector.preprocess(binarized_image)
fig = plt.figure(figsize=(10, 7))
rows, columns = 1, 3
fig.add_subplot(rows, columns, 1)
plt.imshow(image)
plt.axis('off')
plt.title("Before preprocessing")
fig.add_subplot(rows, columns, 2)
plt.imshow(binarized_image)
plt.axis('off')
plt.title("After binarization")
fig.add_subplot(rows, columns, 3)
plt.imshow(preprocessed_image)
plt.axis('off')
plt.title("After preprocessing")
Using text detectors
from dedocutils.text_detection import DoctrTextDetector
text_detector = DoctrTextDetector()
bboxes = text_detector.detect(preprocessed_image)
for bbox in bboxes[:5]:
print(bbox)
BBox(x_top_left=2415, y_top_left=3730, width=202, height=97)
BBox(x_top_left=790, y_top_left=3613, width=383, height=105)
BBox(x_top_left=1690, y_top_left=3488, width=407, height=104)
BBox(x_top_left=2171, y_top_left=3488, width=377, height=92)
BBox(x_top_left=885, y_top_left=3505, width=27, height=50)
Using text recognizers
from dedocutils.text_recognition import TesseractTextRecognizer
text_recognizer = TesseractTextRecognizer()
for bbox in bboxes[:10]:
word_image = preprocessed_image[bbox.y_top_left:bbox.y_bottom_right, bbox.x_top_left:bbox.x_bottom_right]
text = text_recognizer.recognize(word_image, parameters=dict(language="eng"))
print(text)
Fie-
afjefjores.
coluntur,
dicuntur
delubro
eodem
dii in
plures
Using line segmenters
In the previous example, the order of the recognized words isn't the same as the order of the words in the document. It happens because of undetermined work of the text detector. In this case, one may use line segmenter to sort bboxes from the text detector.
from dedocutils.line_segmentation import ClusteringLineSegmenter
line_segmenter = ClusteringLineSegmenter()
sorted_bboxes = line_segmenter.segment(bboxes)
for bbox in sorted_bboxes[1]:
word_image = preprocessed_image[bbox.y_top_left:bbox.y_bottom_right, bbox.x_top_left:bbox.x_bottom_right]
text = text_recognizer.recognize(word_image, parameters=dict(language="eng"))
print(text)
gentes,
fimul.
obibant
munera
fumma
facra,
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file dedoc_utils-0.3.8-py3-none-any.whl
.
File metadata
- Download URL: dedoc_utils-0.3.8-py3-none-any.whl
- Upload date:
- Size: 79.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f99b2bb8f17d9c262b044a9742d3a8ea50ebc4b1b5ed56deaa17aab6ae790208 |
|
MD5 | 84eab5cb0a398301dccdb41af4087156 |
|
BLAKE2b-256 | 36c8bdc0b488a3220744c3c18de0e1567b01600c3874e8501a1629c4e702e462 |