Skip to main content

Deduce: de-identification method for Dutch medical text

Project description

tests build documentation pypi version pypi python versions pypi downloads license black

deduce

Deduce 3.0.0 is out! It is way more accurate, and faster too. It's fully backward compatible, but some functionality is scheduled for removal, read more about it here: docs/migrating-to-v3

  • :sparkles: Remove sensitive information from clinical text written in Dutch
  • :mag: Rule based logic for detecting e.g. names, locations, institutions, identifiers, phone numbers
  • :triangular_ruler: Useful out of the box, but customization higly recommended
  • :seedling: Originally validated in Menger et al. (2017), but further optimized since

:exclamation: Deduce is useful out of the box, but please validate and customize on your own data before using it in a critical environment. Remember that de-identification is almost never perfect, and that clinical text often contains other specific details that can link it to a specific person. Be aware that de-identification should primarily be viewed as a way to mitigate risk of identification, rather than a way to obtain anonymous data.

Currently, deduce can remove the following types of Protected Health Information (PHI):

  • :bust_in_silhouette: person names, including prefixes and initials
  • :earth_americas: geographical locations smaller than a country
  • :hospital: names of hospitals and healthcare institutions
  • :calendar: dates (combinations of day, month and year)
  • :birthday: ages
  • :1234: BSN numbers
  • :1234: identifiers (7+ digits without a specific format, e.g. patient identifiers, AGB, BIG)
  • :phone: phone numbers
  • :e-mail: e-mail addresses
  • :link: URLs

Citing

If you use deduce, please cite the following paper:

Menger, V.J., Scheepers, F., van Wijk, L.M., Spruit, M. (2017). DEDUCE: A pattern matching method for automatic de-identification of Dutch medical text, Telematics and Informatics, 2017, ISSN 0736-5853

Installation

pip install deduce

Getting started

The basic way to use deduce, is to pass text to the deidentify method of a Deduce object:

from deduce import Deduce

deduce = Deduce()

text = (
    "betreft: Jan Jansen, bsn 111222333, patnr 000334433. De patient J. Jansen is 64 jaar oud en woonachtig in "
    "Utrecht. Hij werd op 10 oktober 2018 door arts Peter de Visser ontslagen van de kliniek van het UMCU. "
    "Voor nazorg kan hij worden bereikt via j.JNSEN.123@gmail.com of (06)12345678."
)

doc = deduce.deidentify(text)

The output is available in the Document object:

from pprint import pprint

pprint(doc.annotations)

AnnotationSet({
    Annotation(text="(06)12345678", start_char=272, end_char=284, tag="telefoonnummer"),
    Annotation(text="111222333", start_char=25, end_char=34, tag="bsn"),
    Annotation(text="Peter de Visser", start_char=153, end_char=168, tag="persoon"),
    Annotation(text="j.JNSEN.123@gmail.com", start_char=247, end_char=268, tag="email"),
    Annotation(text="patient J. Jansen", start_char=56, end_char=73, tag="patient"),
    Annotation(text="Jan Jansen", start_char=9, end_char=19, tag="patient"),
    Annotation(text="10 oktober 2018", start_char=127, end_char=142, tag="datum"),
    Annotation(text="64", start_char=77, end_char=79, tag="leeftijd"),
    Annotation(text="000334433", start_char=42, end_char=51, tag="id"),
    Annotation(text="Utrecht", start_char=106, end_char=113, tag="locatie"),
    Annotation(text="UMCU", start_char=202, end_char=206, tag="instelling"),
})

print(doc.deidentified_text)

"""betreft: [PERSOON-1], bsn [BSN-1], patnr [ID-1]. De [PERSOON-1] is [LEEFTIJD-1] jaar oud en woonachtig in 
[LOCATIE-1]. Hij werd op [DATUM-1] door arts [PERSOON-2] ontslagen van de kliniek van het [INSTELLING-1]. 
Voor nazorg kan hij worden bereikt via [EMAIL-1] of [TELEFOONNUMMER-1]."""

Additionally, if the names of the patient are known, they may be added as metadata, where they will be picked up by deduce:

from deduce.person import Person

patient = Person(first_names=["Jan"], initials="JJ", surname="Jansen")
doc = deduce.deidentify(text, metadata={'patient': patient})

print (doc.deidentified_text)

"""betreft: [PATIENT], bsn [BSN-1], patnr [ID-1]. De [PATIENT] is [LEEFTIJD-1] jaar oud en woonachtig in 
[LOCATIE-1]. Hij werd op [DATUM-1] door arts [PERSOON-2] ontslagen van de kliniek van het [INSTELLING-1]. 
Voor nazorg kan hij worden bereikt via [EMAIL-1] of [TELEFOONNUMMER-1]."""

As you can see, adding known names keeps references to [PATIENT] in text. It also increases recall, as not all known names are contained in the lookup lists.

Versions

For most cases the latest version is suitable, but some specific milestones are:

  • 3.0.0 - Many optimizations in accuracy, smaller refactors, further speedups
  • 2.0.0 - Major refactor, with speedups, many new options for customizing, functionally very similar to original
  • 1.0.8 - Small bugfixes compared to original release
  • 1.0.1 - Original release with Menger et al. (2017)

Detailed versioning information is accessible in the changelog.

Documentation

All documentation, including a more extensive tutorial on using, configuring and modifying deduce, and its API, is available at: docs/tutorial

Contributing

For setting up the dev environment and contributing guidelines, see: docs/contributing

Authors

  • Vincent Menger - Initial work
  • Jonathan de Bruin - Code review
  • Pablo Mosteiro - Bug fixes, structured annotations

License

This project is licensed under the GNU General Public License v3.0 - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deduce-3.0.3.tar.gz (1.9 MB view details)

Uploaded Source

Built Distribution

deduce-3.0.3-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file deduce-3.0.3.tar.gz.

File metadata

  • Download URL: deduce-3.0.3.tar.gz
  • Upload date:
  • Size: 1.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1023-azure

File hashes

Hashes for deduce-3.0.3.tar.gz
Algorithm Hash digest
SHA256 a122c519881908a6ac04a96c75ad646628b9fde074627d272a972fdcf83e9960
MD5 4ab79cc9779aa0e3957a0080fabdaba6
BLAKE2b-256 48627a4df7a3faba4261c0a55b9455472ba4d05bb2178877986105aaa0ca7594

See more details on using hashes here.

File details

Details for the file deduce-3.0.3-py3-none-any.whl.

File metadata

  • Download URL: deduce-3.0.3-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1023-azure

File hashes

Hashes for deduce-3.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c41d8d834673285092faebbb846185f460fabc45187f00587f8cf98820b280cd
MD5 d284fc13a68c7d92d68837a83fa2f163
BLAKE2b-256 643afd062bca79ad35bfba6928cfe719e7c9aae9e3a7bc15e5673cb92304590a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page