Skip to main content

Deduce: de-identification method for Dutch medical text

Project description

deduce

tests coverage build documentation pypi version pypi python versions pypi downloads license black

Installation - Versions - Getting Started - Documentation - Contributiong - Authors - License

Deduce 2.0.0 has been released! It includes a 10x speedup, and way more features for customizing and tailoring. Some small changes are needed to keep going from version 1, read more about it here: docs/migrating-to-v2

De-identify clinial text written in Dutch using deduce, a rule-based de-identification method for Dutch clinical text.

The development, principles and validation of deduce were initially described in Menger et al. (2017). De-identification of clinical text is needed for using text data for analysis, to comply with legal requirements and to protect the privacy of patients. Our rule-based method removes Protected Health Information (PHI) in the following categories:

  • Person names, including initials
  • Geographical locations smaller than a country
  • Names of institutions that are related to patient treatment
  • Dates
  • Ages
  • Patient numbers
  • Telephone numbers
  • E-mail addresses and URLs

If you use deduce, please cite the following paper:

Menger, V.J., Scheepers, F., van Wijk, L.M., Spruit, M. (2017). DEDUCE: A pattern matching method for automatic de-identification of Dutch medical text, Telematics and Informatics, 2017, ISSN 0736-5853

Installation

pip install deduce

Versions

For most cases the latest version is suitable, but some specific milestones are:

  • 2.0.0 - Major refactor, with speedups, many new options for customizing, functionally very similar to original
  • 1.0.8 - Small bugfixes compared to original release
  • 1.0.1 - Original release with Menger et al. (2017)

Detailed versioning information is accessible in the changelog.

Getting started

The basic way to use deduce, is to pass text to the deidentify method of a Deduce object:

from deduce import Deduce

deduce = Deduce()

text = """Dit is stukje tekst met daarin de naam Jan Jansen. De patient J. Jansen 
        (e: j.jnsen@email.com, t: 06-12345678) is 64 jaar oud en woonachtig 
        in Utrecht. Hij werd op 10 oktober door arts Peter de Visser ontslagen 
        van de kliniek van het UMCU."""

doc = deduce.deidentify(text)

The output is available in the Document object:

from pprint import pprint

pprint(doc.annotations)

AnnotationSet({Annotation(text='Jan Jansen', start_char=39, end_char=49, tag='persoon', length=10),
               Annotation(text='Peter de Visser', start_char=185, end_char=200, tag='persoon', length=15),
               Annotation(text='j.jnsen@email.com', start_char=76, end_char=93, tag='url', length=17),
               Annotation(text='10 oktober', start_char=164, end_char=174, tag='datum', length=10),
               Annotation(text='patient J. Jansen', start_char=54, end_char=71, tag='persoon', length=17),
               Annotation(text='64', start_char=114, end_char=116, tag='leeftijd', length=2),
               Annotation(text='UMCU', start_char=234, end_char=238, tag='instelling', length=4),
               Annotation(text='06-12345678', start_char=98, end_char=109, tag='telefoonnummer', length=11),
               Annotation(text='Utrecht', start_char=143, end_char=150, tag='locatie', length=7)})

print(doc.deidentified_text)

"""Dit is stukje tekst met daarin de naam <PERSOON-1>. De <PERSOON-2> 
(e: <URL-1>, t: <TELEFOONNUMMER-1>) is <LEEFTIJD-1> jaar oud en woonachtig 
in <LOCATIE-1>. Hij werd op <DATUM-1> door arts <PERSOON-3> ontslagen 
van de kliniek van het <INSTELLING-1>."""

Aditionally, if the names of the patient are known, they may be added as metadata, where they will be picked up by deduce:

from deduce.person import Person

patient = Person(first_names=["Jan"], initials="JJ", surname="Jansen")
doc = deduce.deidentify(text, metadata={'patient': patient})

print (doc.deidentified_text)

"""Dit is stukje tekst met daarin de naam <PATIENT>. De <PATIENT> 
(e: <URL-1>, t: <TELEFOONNUMMER-1>) is <LEEFTIJD-1> jaar oud en woonachtig 
in <LOCATIE-1>. Hij werd op <DATUM-1> door arts <PERSOON-1> ontslagen 
van de kliniek van het <INSTELLING-1>."""

As you can see, adding known names keeps references to <PATIENT> in text. It also increases recall, as not all known names are contained in the lookup lists.

Documentation

A more extensive tutorial on using, configuring and modifying deduce is available at: docs/tutorial

Basic documentation and API are available at: docs

Contributing

For setting up the dev environment and contributing guidelines, see: docs/contributing

Authors

  • Vincent Menger - Initial work
  • Jonathan de Bruin - Code review
  • Pablo Mosteiro - Bug fixes, structured annotations

License

This project is licensed under the GNU LGPLv3 license - see the LICENSE.md file for details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deduce-2.0.2.tar.gz (99.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

deduce-2.0.2-py3-none-any.whl (101.1 kB view details)

Uploaded Python 3

File details

Details for the file deduce-2.0.2.tar.gz.

File metadata

  • Download URL: deduce-2.0.2.tar.gz
  • Upload date:
  • Size: 99.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.10.10 Linux/5.15.0-1034-azure

File hashes

Hashes for deduce-2.0.2.tar.gz
Algorithm Hash digest
SHA256 0053222fd6bc144a06f7379bb2771d3d2944050b3c54954715bb5b69968cfb8b
MD5 cceb72ecc8ca674d28150ba7f63af875
BLAKE2b-256 5d5f23759d24e9d5533207c4d640c214c5a43741b46ea6a372e7828dc5a99ab6

See more details on using hashes here.

File details

Details for the file deduce-2.0.2-py3-none-any.whl.

File metadata

  • Download URL: deduce-2.0.2-py3-none-any.whl
  • Upload date:
  • Size: 101.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.10.10 Linux/5.15.0-1034-azure

File hashes

Hashes for deduce-2.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ffac49dc04d405a5c46892b8a874a6ca2ca7d68fdb14a913496324f332d1d371
MD5 781eab70ec606f156f79a62e403685e4
BLAKE2b-256 3552c9f9352679bf4b7eddc4849eec4cf181e51cfa49c2883b9880c5e656ad4f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page