Skip to main content

Label propagation using deep registration

Project description

LabelProp - CLI and Server

Requirements

  • Python >= 3.8.*
  • Pytorch >=1.10

Installation

To install this project with CUDA 11.1 :

git clone https://github.com/nathandecaux/labelprop
cd labelprop
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install -e .

Usage

CLI

Basic operations can be done using the command-line interface provided in labelprop.py at the root of the project.

Pretraining

$ labelprop pretrain --help
Usage: labelprop.py pretrain [OPTIONS] IMG_LIST

Pretrain the model on a list of images. The images are assumed to be
  greyscale nifti files. IMG_LIST is a text file containing line-separated
  paths to the images.

Options:
  -s, --shape INTEGER         Image size (default: 256)
  -z, --z_axis INTEGER        Axis along which to propagate (default: 2)
  -o, --output_dir DIRECTORY  Output directory for checkpoint
  -n, --name TEXT             Checkpoint name (default : datetime)
  -e, --max_epochs INTEGER    

Training

$ labelprop train --help
Usage: labelprop.py train [OPTIONS] IMG_PATH MASK_PATH

Train a model and save the checkpoint and predicted masks. IMG_PATH is a
  greyscale nifti (.nii.gz or .nii) image, while MASKPATH is it related sparse
  segmentation.

Options:
  -s, --shape INTEGER         Image size (default: 256)
  -c, --pretrained_ckpt FILE  Path to the pretrained checkpoint (.ckpt)
  -e, --max_epochs INTEGER
  -z, --z_axis INTEGER        Axis along which to propagate (default: 2)
  -o, --output_dir DIRECTORY  Output directory for checkpoint and predicted
                              masks
  -n, --name TEXT             Prefix for the output files (checkpoint and
                              masks)

Propagating (inference)

$ labelprop propagate --help
Usage: labelprop.py propagate [OPTIONS] IMG_PATH MASK_PATH CHECKPOINT

Propagate labels from sparse segmentation.  IMG_PATH is a greyscale nifti
  (.nii.gz or .nii) image, while MASKPATH is it related sparse segmentation.
  CHECKPOINT is the path to the checkpoint (.ckpt) file.

Options:
  -s, --shape INTEGER         Image size (default: 256)
  -z, --z_axis INTEGER        Axis along which to propagate (default: 2)
  -l, --label INTEGER         Label to propagate (default: 0 = all)
  -o, --output_dir DIRECTORY  Output directory for predicted masks (up, down
                              and fused)
  -n, --name TEXT             Prefix for the output files (masks)

GUI

See this repo

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deep-labelprop-1.2.1.tar.gz (39.9 kB view hashes)

Uploaded Source

Built Distribution

deep_labelprop-1.2.1-py3-none-any.whl (43.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page