Tool to easily perform quantile regression using deep learning (pytorch).
Project description
deep-q-reg
下の方に日本語の説明があります
Overview
- Tool to easily perform quantile regression using deep learning (pytorch).
- Automatically compensates for quantile order swapping defects in predicted data.
- Customizable granularity, from "hyper-parameter unspecified mode" to "detailed parameter settings".
- The number of data dimensions is set automatically at the first training with define-by-run.
Example usage
import deep_q_reg
# Prepare data
train_x = load_x_data() # [[0.538], [0.469], ...]
train_y = load_y_data() # [24.0, 21.6, ...]
# Parameters
params = {} # This can also be omitted. See details below for specifying parameters
# Deep quantile regression [deep_q_reg]
dqr = deep_q_reg.Deep_Q_Reg(params)
# Training [deep_q_reg]
dqr.train(train_x, train_y)
# Inference [deep_q_reg]
pred_y = dqr.predict(test_x)
Details of specifying parameters
- Parameters are specified as follows. Omitted specifications are automatically filled in with default values.
params = {
'normalize_x': True, # Automatic normalization of x
'quant_ls': [0.25, 0.5, 0.75], # List of prediction target quantiles
# Layer structure
'layers': [
{
'activation': 'ReLU', # Activation function name (Specify names under torch.nn such as Tanh, ReLU, Sigmoid)
'out_n': 32 # Output dimension of the layer (Input dimension is automatically determined from training data or previous layer settings)
},
{'activation': 'ReLU', 'out_n': 32}
],
# Training parameters
'mini_batch_n': 10000, # Number of iterations for training (mini-batch training)
'mini_batch_size': 512 # Mini-batch size
}
概要
- 深層学習(pytorch)による分位点回帰を簡単に実施できるツール
- 推論データにおける分位点順序の入れ替わり不具合を自動的に補正する
- 「パラメータ等指定無し」から「詳細なパラメータ設定」まで自由なカスタマイズ粒度で扱える
- データ次元数の設定がdefine-by-runで初回学習時に自動で設定される
使用例
import deep_q_reg
# データ準備
train_x = load_x_data() # [[0.538], [0.469], ...]
train_y = load_y_data() # [24.0, 21.6, ...]
# パラメータ
params = {} # このように省略してもよい。詳細な指定の仕方は後述
# 深層分位点回帰 [deep_q_reg]
dqr = deep_q_reg.Deep_Q_Reg(params)
# 学習 [deep_q_reg]
dqr.train(train_x, train_y)
# 推論 [deep_q_reg]
pred_y = dqr.predict(test_x)
paramsの指定詳細
- paramsは下記のように指定します。省略された指定値は自動的にdefault値が補完されます。
params = {
'normalize_x': True, # xの自動正規化
'quant_ls': [0.25, 0.5, 0.75], # 予測対象分位点一覧
# 層構成
'layers': [
{
'activation': 'ReLU', # 活性化関数名 (torch.nn配下の名前を指定する。Tanh, ReLU, Sigmoid など)
'out_n': 32 # 層の出力次元数 (入力次元数は学習データや前層設定から自動的に判断される)
},
{'activation': 'ReLU', 'out_n': 32}
],
# 学習パラメータ
'mini_batch_n': 10000, # 繰り返し学習回数 (ミニバッチ学習)
'mini_batch_size': 512 # ミニバッチのサイズ
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-q-reg-0.0.3.tar.gz
(6.3 kB
view details)
Built Distribution
File details
Details for the file deep-q-reg-0.0.3.tar.gz
.
File metadata
- Download URL: deep-q-reg-0.0.3.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 531f16d0d998846c79019bdf58e2854f03b57a4b68c465ed595e516f68a497b7 |
|
MD5 | 2ec7ff5e143456d24ca087e6e4ad050a |
|
BLAKE2b-256 | 095ee5f6e95f770c4980a0750771f7ff22a9ff54086840ccf4cc5729d18d7347 |
File details
Details for the file deep_q_reg-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: deep_q_reg-0.0.3-py3-none-any.whl
- Upload date:
- Size: 7.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6bd789df0754f3490712654312070e19eea06ec1ac4e5e6f92950e60dabe6f1d |
|
MD5 | c6c7ee512b81670e471e81e8e9ae5b86 |
|
BLAKE2b-256 | ebb88de933e8a8f02ddc3eed25cbfa01ad48c5fa9a7b18250e1326b793c9986b |