PyTorch implementation of Deep Factorization Machine Models
Project description
Factorization Machine models in PyTorch
This package provides a PyTorch implementation of Deep Factorization Machine ;odels and common datasets in Retail Recommendation.
Available Datasets
Available Models
Environment
conda env create -f environment_conda.yml
source activate environment_conda
Installation
pip install deep-rec
Example
python main.py --device cpu --epoch 2
API Documentation
https://rixwew.github.io/deep-rec (en construcción)
Licence
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-rec-0.0.5.tar.gz
(6.6 kB
view details)
Built Distribution
File details
Details for the file deep-rec-0.0.5.tar.gz
.
File metadata
- Download URL: deep-rec-0.0.5.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3bfa6637fb76f8666f2a405ee4fd6399d582d88fa4d3e6b4cda0faaaf9b17edd |
|
MD5 | 7bac243655c613976f6b0e382de87515 |
|
BLAKE2b-256 | 127eeceb2ef0b0f2d8404b7b4d30ac8b0fa056b9d143897f37be306a39896322 |
File details
Details for the file deep_rec-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: deep_rec-0.0.5-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e6fd7d247bceeace96b06b46b47e9112417cd42ccfe5c1cc0e3cd756360aede |
|
MD5 | c08baa0b9be740ad8ddbf0452ec5a0b2 |
|
BLAKE2b-256 | 88a2fe6981982cac13248c60e428e73629c372a15c6e8339ba07df244b96ac0f |