PyTorch implementation of Deep Factorization Machine Models
Project description
Factorization Machine models in PyTorch
This package provides a PyTorch implementation of Deep Factorization Machine ;odels and common datasets in Retail Recommendation.
Available Datasets
Available Models
Environment
conda env create -f environment_conda.yml
source activate environment_conda
Installation
pip install deep-rec
Example
python main.py --device cpu --epoch 2
API Documentation
https://rixwew.github.io/deep-rec (en construcción)
Licence
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-rec-0.0.4.tar.gz
(4.9 kB
view details)
Built Distribution
File details
Details for the file deep-rec-0.0.4.tar.gz
.
File metadata
- Download URL: deep-rec-0.0.4.tar.gz
- Upload date:
- Size: 4.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34f2348066fba98f741c6d2edf242e7b077b443c93fb8b4274cdba72fa998065 |
|
MD5 | 7572e4310f7e2f6ab9a1161e676f0499 |
|
BLAKE2b-256 | 2dc37ad10169294117e43ea29c38336db306aa1b12e4cea5f7029c88479676b8 |
File details
Details for the file deep_rec-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: deep_rec-0.0.4-py3-none-any.whl
- Upload date:
- Size: 6.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73721f10209e55ebf0ff46847ae7cecfa13eb9cf0907b4a69913fd78df81f585 |
|
MD5 | 496af46aaa423e792157dac4ec1f66c4 |
|
BLAKE2b-256 | 3871442232a767fd8f26ef417061df2390cb46a0d4679bc5506a9ecb66e86a24 |