PyTorch implementation of Deep Factorization Machine Models
Project description
Factorization Machine models in PyTorch
This package provides a PyTorch implementation of Deep Factorization Machine ;odels and common datasets in Retail Recommendation.
Available Datasets
Available Models
Environment
conda env create -f environment_conda.yml
source activate environment_conda
Installation
pip install deep-rec
Example
python main.py --device cpu --epoch 2
API Documentation
https://rixwew.github.io/deep-rec (en construcción)
Licence
MIT
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-rec-0.0.4.dev1.tar.gz
(6.6 kB
view details)
Built Distribution
File details
Details for the file deep-rec-0.0.4.dev1.tar.gz
.
File metadata
- Download URL: deep-rec-0.0.4.dev1.tar.gz
- Upload date:
- Size: 6.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66073f77e112096e699dc88b167f9857a92c3e755a04990df4de001f6c20674b |
|
MD5 | 93057a864f4aeb642cc91a49b87fc466 |
|
BLAKE2b-256 | 6360c16e74a8766a9e344062c909fa9411f8b0fb52c1ae443567288262345851 |
File details
Details for the file deep_rec-0.0.4.dev1-py3-none-any.whl
.
File metadata
- Download URL: deep_rec-0.0.4.dev1-py3-none-any.whl
- Upload date:
- Size: 8.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aadf7469cd41019e9968294bb1f4f1127dbddb7a386de82842b74e0817bff4df |
|
MD5 | e805ca2894d8e2aaef49e56d230e3747 |
|
BLAKE2b-256 | 89b9e067dd35d0cd2a1d99719e3bcaa7becb48e757eb1615b26ef821196d34b3 |