Skip to main content

Online Deep Learning for river

Project description

incremental dl logo

PyPI PyPI - Downloads GitHub

deep-river is a Python library for online deep learning. deep-river's ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.

📚 Documentation

The documentation contains an overview of all features of this repository as well as the repository's full features list. In each of these, the git repo reference is listed in a section that shows examples of the features and functionality.

💈 Installation

pip install deep-river

or

pip install "river[deep]"

You can install the latest development version from GitHub as so:

pip install https://github.com/online-ml/deep-river/archive/refs/heads/master.zip

🍫 Quickstart

We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.

Classification

>>> from river import metrics, datasets, preprocessing, compose
>>> from deep_river import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed

>>> _ = manual_seed(42)

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 5)
...         self.nonlin = nn.ReLU()
...         self.dense1 = nn.Linear(5, 2)
...         self.softmax = nn.Softmax(dim=-1)
...
...     def forward(self, X, **kwargs):
...         X = self.nonlin(self.dense0(X))
...         X = self.nonlin(self.dense1(X))
...         X = self.softmax(X)
...         return X

>>> model_pipeline = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam')
... )

>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model_pipeline.predict_one(x)  # make a prediction
...     metric = metric.update(y, y_pred)  # update the metric
...     model_pipeline = model_pipeline.learn_one(x, y)  # make the model learn
>>> print(f"Accuracy: {metric.get():.4f}")
Accuracy: 0.6728

Multi Target Regression

>>> from river import evaluate, compose
>>> from river import metrics
>>> from river import preprocessing
>>> from river import stream
>>> from sklearn import datasets
>>> from torch import nn
>>> from deep_river.regression.multioutput import MultiTargetRegressor

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 3)
...
...     def forward(self, X, **kwargs):
...         X = self.dense0(X)
...         return X

>>> dataset = stream.iter_sklearn_dataset(
...         dataset=datasets.load_linnerud(),
...         shuffle=True,
...         seed=42
...     )
>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     MultiTargetRegressor(
...         module=MyModule,
...         loss_fn='mse',
...         lr=0.3,
...         optimizer_fn='sgd',
...     ))
>>> metric = metrics.multioutput.MicroAverage(metrics.MAE())
>>> ev = evaluate.progressive_val_score(dataset, model, metric)
>>> print(f"MicroAverage(MAE): {metric.get():.2f}")
MicroAverage(MAE): 28.36

Anomaly Detection

>>> from deep_river.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler

>>> dataset = CreditCard().take(5000)
>>> metric = metrics.ROCAUC(n_thresholds=50)

>>> class MyAutoEncoder(nn.Module):
...     def __init__(self, n_features, latent_dim=3):
...         super(MyAutoEncoder, self).__init__()
...         self.linear1 = nn.Linear(n_features, latent_dim)
...         self.nonlin = nn.LeakyReLU()
...         self.linear2 = nn.Linear(latent_dim, n_features)
...         self.sigmoid = nn.Sigmoid()
...
...     def forward(self, X, **kwargs):
...         X = self.linear1(X)
...         X = self.nonlin(X)
...         X = self.linear2(X)
...         return self.sigmoid(X)

>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)

>>> for x, y in dataset:
...     score = model.score_one(x)
...     model = model.learn_one(x=x)
...     metric = metric.update(y, score)
...
>>> print(f"ROCAUC: {metric.get():.4f}")
ROCAUC: 0.7447

🏫 Affiliations

FZI Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deep_river-0.2.1.tar.gz (27.2 kB view details)

Uploaded Source

Built Distribution

deep_river-0.2.1-py3-none-any.whl (41.0 kB view details)

Uploaded Python 3

File details

Details for the file deep_river-0.2.1.tar.gz.

File metadata

  • Download URL: deep_river-0.2.1.tar.gz
  • Upload date:
  • Size: 27.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for deep_river-0.2.1.tar.gz
Algorithm Hash digest
SHA256 a8e91490eb2136f2665eee3aa07fb6c55b888da3b5850d608ee6430823abcb61
MD5 a2e14fb41238620d2553e1aa34dfef69
BLAKE2b-256 8524f3e2171526521b9804bc714cd9229be9762c9e605d5197a98edcddb6d22c

See more details on using hashes here.

File details

Details for the file deep_river-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: deep_river-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 41.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for deep_river-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 00a8fba43eb2ee015b937ef440a2419a0b04b0aa3e146c812efeafe3c8c91021
MD5 3a4e219a27c9e18d9f7cb80f978fa81f
BLAKE2b-256 2913869576d874da445f2e0bd254bf1b298959970e8f79df24aba84c2fd36f4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page