Skip to main content

Online Deep Learning for river

Project description

incremental dl logo

PyPI PyPI - Downloads GitHub

deep-river is a Python library for online deep learning. deep-river's ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.

📚 Documentation

The documentation contains an overview of all features of this repository as well as the repository's full features list. In each of these, the git repo reference is listed in a section that shows examples of the features and functionality.

💈 Installation

pip install deep-river

or

pip install "river[deep]"

You can install the latest development version from GitHub as so:

pip install https://github.com/online-ml/deep-river/archive/refs/heads/master.zip

🍫 Quickstart

We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.

Classification

>>> from river import metrics, datasets, preprocessing, compose
>>> from deep_river import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed

>>> _ = manual_seed(42)

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 5)
...         self.nonlin = nn.ReLU()
...         self.dense1 = nn.Linear(5, 2)
...         self.softmax = nn.Softmax(dim=-1)
...
...     def forward(self, X, **kwargs):
...         X = self.nonlin(self.dense0(X))
...         X = self.nonlin(self.dense1(X))
...         X = self.softmax(X)
...         return X

>>> model_pipeline = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam')
... )

>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model_pipeline.predict_one(x)  # make a prediction
...     metric.update(y, y_pred)  # update the metric
...     model_pipeline.learn_one(x, y)  # make the model learn
>>> print(f"Accuracy: {metric.get():.4f}")
Accuracy: 0.7264

Multi Target Regression

>>> from river import evaluate, compose
>>> from river import metrics
>>> from river import preprocessing
>>> from river import stream
>>> from sklearn import datasets
>>> from torch import nn
>>> from deep_river.regression.multioutput import MultiTargetRegressor

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 3)
...
...     def forward(self, X, **kwargs):
...         X = self.dense0(X)
...         return X

>>> dataset = stream.iter_sklearn_dataset(
...         dataset=datasets.load_linnerud(),
...         shuffle=True,
...         seed=42
...     )
>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     MultiTargetRegressor(
...         module=MyModule,
...         loss_fn='mse',
...         lr=0.3,
...         optimizer_fn='sgd',
...     ))
>>> metric = metrics.multioutput.MicroAverage(metrics.MAE())
>>> ev = evaluate.progressive_val_score(dataset, model, metric)
>>> print(f"MicroAverage(MAE): {metric.get():.2f}")
MicroAverage(MAE): 34.31

Anomaly Detection

>>> from deep_river.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler

>>> dataset = CreditCard().take(5000)
>>> metric = metrics.ROCAUC(n_thresholds=50)

>>> class MyAutoEncoder(nn.Module):
...     def __init__(self, n_features, latent_dim=3):
...         super(MyAutoEncoder, self).__init__()
...         self.linear1 = nn.Linear(n_features, latent_dim)
...         self.nonlin = nn.LeakyReLU()
...         self.linear2 = nn.Linear(latent_dim, n_features)
...         self.sigmoid = nn.Sigmoid()
...
...     def forward(self, X, **kwargs):
...         X = self.linear1(X)
...         X = self.nonlin(X)
...         X = self.linear2(X)
...         return self.sigmoid(X)

>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)

>>> for x, y in dataset:
...     score = model.score_one(x)
...     model.learn_one(x=x)
...     metric.update(y, score)
...
>>> print(f"ROCAUC: {metric.get():.4f}")
ROCAUC: 0.7812

🏫 Affiliations

FZI Logo

Lieferbot net

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deep_river-0.2.7.tar.gz (30.4 kB view details)

Uploaded Source

Built Distribution

deep_river-0.2.7-py3-none-any.whl (44.1 kB view details)

Uploaded Python 3

File details

Details for the file deep_river-0.2.7.tar.gz.

File metadata

  • Download URL: deep_river-0.2.7.tar.gz
  • Upload date:
  • Size: 30.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for deep_river-0.2.7.tar.gz
Algorithm Hash digest
SHA256 bba369312c6054a8ed90675679b1f42e384c1cb5f6131b89e5b7358b18bab1ab
MD5 efc576a9164234d576beb7ce8a97edc7
BLAKE2b-256 c7259b2645045e96cbfd0b478b735b3ae25fd5bd04d3c46399ac1323f3bf423a

See more details on using hashes here.

File details

Details for the file deep_river-0.2.7-py3-none-any.whl.

File metadata

  • Download URL: deep_river-0.2.7-py3-none-any.whl
  • Upload date:
  • Size: 44.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for deep_river-0.2.7-py3-none-any.whl
Algorithm Hash digest
SHA256 cfbb7b23280a51adde661875a194d066b9c16fa287a39d424ff9e5be873e154c
MD5 3a4e233e8ddd5d721f1f5513ccbd0a36
BLAKE2b-256 67d8032ce687038c1edf76d8c824a35f3001b8ff1422db8d2ee33cc6276cdb75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page