Helper to train deep neural networks
Project description
deep-trainer
Baseline code to train deep neural networks. Currently only available for PyTorch Framework.
Install
Pip
$ pip install deep-trainer
Conda
Not yet available
Getting started
import torch
from deep_trainer import PytorchTrainer
# Datasets
trainset = #....
valset = #....
testset = #....
# Dataloaders
train_loader = torch.utils.data.DataLoader(trainset, 64, shuffle=True)
val_loader = torch.data.utils.DataLoader(valset, 256)
test_loader = torch.data.utils.DataLoader(testset, 256)
# Model & device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = #....
model.to(device)
# Optimizer & Scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=len(trainset) * 50, 0.1) # Decay by 10 every 50 epochs
# Criterion
criterion = torch.nn.CrossEntropyLoss() # For classification for instance
# Training
trainer = PytorchTrainer(model, optimizer, scheduler, save_mode="small", device=device)
trainer.train(150, train_loader, criterion, val_loader=val_loader)
# Testing
trainer.load("experiments/checkpoints/best.ckpt")
trainer.evaluate(test_loader, criterion)
Example
example/example.py
show how to train a PreActResNet with Deep Trainer.
Install the additional requirements and use it with:
$ # See hyperparameters available
$ python example.py -h
$
$ # Launch the default training
$ python example.py
$
$ # Once done (or during the training), look for default tensorboard logs
$ tensorboard --logdir experiments/logs/
This script is reaching around 94-95% accuracy on validation with Cifar10 and a PreActResNet18.
Here are the training logs:
Build and Deploy
$ python -m build
$ python -m twine upload dist/*
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deep-trainer-0.1.1.tar.gz
(14.5 kB
view details)
Built Distribution
File details
Details for the file deep-trainer-0.1.1.tar.gz
.
File metadata
- Download URL: deep-trainer-0.1.1.tar.gz
- Upload date:
- Size: 14.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5d0ff96445a80a2b4de4001510acf58981d5c2af83b6fbd62c6ed5f6bed90378 |
|
MD5 | 0cdf7cbe4651c54cdcf018536b89dd04 |
|
BLAKE2b-256 | ea8bfb5abf7b208d3b0563f9601447d111155067cf055b2c1f0abe6fd391e0bc |
File details
Details for the file deep_trainer-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: deep_trainer-0.1.1-py3-none-any.whl
- Upload date:
- Size: 14.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 680109a16475a3949977b3c80a5297130421d8f4975606fba5caa586b8f0f910 |
|
MD5 | d647727dc8d8ee2b191a925ea3e58e75 |
|
BLAKE2b-256 | 4b01e21f476ecc3518aac33a33181e5a92ac79ea0e1ac47c1c985268b615efbf |