Skip to main content

Predicting pathogenic potentials of novel strains of known bacterial species.

Project description

DeePaC-strain

DeePaC-strain is a plugin for DeePaC (see below) shipping built-in models for predicting pathogenic potentials of novel strains of known bacterial species.

DeePaC

DeePaC is a python package and a CLI tool for predicting labels (e.g. pathogenic potentials) from short DNA sequences (e.g. Illumina reads) with interpretable reverse-complement neural networks. For details, see our preprint on bioRxiv: https://www.biorxiv.org/content/10.1101/535286v3 and the paper in Bioinformatics: https://doi.org/10.1093/bioinformatics/btz541. For details regarding the interpretability functionalities of DeePaC, see the preprint here: https://www.biorxiv.org/content/10.1101/2020.01.29.925354v2

Documentation can be found here: https://rki_bioinformatics.gitlab.io/DeePaC/.

Installation

With Bioconda (recommended)

install with bioconda

You can install DeePaC with bioconda. Set up the bioconda channel first (channel ordering is important):

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

We recommend setting up an isolated conda environment:

# python 3.6, 3.7 and 3.8 are supported
conda create -n my_env python=3.8
conda activate my_env

and then:

# For GPU support (recommended)
conda install tensorflow-gpu deepacvir
# Basic installation (CPU-only)
conda install deepacvir

With pip

We recommend setting up an isolated conda environment (see above). Alternatively, you can use a virtualenv virtual environment (note that deepac requires python 3):

# use -p to use the desired python interpreter (python 3.6 or higher required)
virtualenv -p /usr/bin/python3 my_env
source my_env/bin/activate

You can then install DeePaC with pip. For GPU support, you need to install CUDA and CuDNN manually first (see TensorFlow installation guide for details). Then you can do the same as above:

# For GPU support (recommended)
pip install tensorflow-gpu
pip install deepacvir

Alternatively, if you don't need GPU support:

# Basic installation (CPU-only)
pip install deepacvir

Usage

DeePaC-strain may be used exactly as the base version of DeePaC. To use the plugin, substitute the deepac command for deepac-strain. Visit https://gitlab.com/rki_bioinformatics/DeePaC for a DeePaC readme describing basic usage.

For example, you can use the following commands:

# See help
deepac-strain --help

# Run quick tests (eg. on CPUs)
deepac-strain test -q
# Full tests
deepac-strain test -a

# Predict using a rapid CNN (trained on VHDB data)
deepac-strain predict -r input.fasta
# Predict using a sensitive LSTM (trained on VHDB data)
deepac-strain predict -s input.fasta

More examples are available at https://gitlab.com/rki_bioinformatics/DeePaC.

Supplementary data and scripts

In the main DeePaC repository (https://gitlab.com/rki_bioinformatics/DeePaC) you can find the R scripts and data files used in the papers for dataset preprocessing and benchmarking.

Cite us

If you find DeePaC useful, please cite:

@article{10.1093/bioinformatics/btz541,
    author = {Bartoszewicz, Jakub M and Seidel, Anja and Rentzsch, Robert and Renard, Bernhard Y},
    title = "{DeePaC: predicting pathogenic potential of novel DNA with reverse-complement neural networks}",
    journal = {Bioinformatics},
    year = {2019},
    month = {07},
    issn = {1367-4803},
    doi = {10.1093/bioinformatics/btz541},
    url = {https://doi.org/10.1093/bioinformatics/btz541},
    eprint = {http://oup.prod.sis.lan/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btz541/28971344/btz541.pdf},
}

@article {Bartoszewicz2020.01.29.925354,
    author = {Bartoszewicz, Jakub M. and Seidel, Anja and Renard, Bernhard Y.},
    title = {Interpretable detection of novel human viruses from genome sequencing data},
    elocation-id = {2020.01.29.925354},
    year = {2020},
    doi = {10.1101/2020.01.29.925354},
    publisher = {Cold Spring Harbor Laboratory},
    URL = {https://www.biorxiv.org/content/early/2020/02/01/2020.01.29.925354},
    eprint = {https://www.biorxiv.org/content/early/2020/02/01/2020.01.29.925354.full.pdf},
    journal = {bioRxiv}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepacstrain-0.2.1.tar.gz (30.1 MB view details)

Uploaded Source

Built Distribution

deepacstrain-0.2.1-py3-none-any.whl (30.1 MB view details)

Uploaded Python 3

File details

Details for the file deepacstrain-0.2.1.tar.gz.

File metadata

  • Download URL: deepacstrain-0.2.1.tar.gz
  • Upload date:
  • Size: 30.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for deepacstrain-0.2.1.tar.gz
Algorithm Hash digest
SHA256 56b8dd4ebc206142c883bc305fa607a3e52a2db43fa4beb157e9545083acf897
MD5 1a03feed3f36338b0e91ed88270cdf18
BLAKE2b-256 930ea1ba49da45b5328274fa046bda8e138835ca44a92de44f5a70a8f2441d18

See more details on using hashes here.

File details

Details for the file deepacstrain-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: deepacstrain-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 30.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20201009 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.6

File hashes

Hashes for deepacstrain-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5917587936a701fe0f9c890ce7c81198ec7ff1254e5ded35368ce765dc84bb31
MD5 6bc2eea6d6e674cf2842537449e403a4
BLAKE2b-256 1575da0d812c053ee196e914477765b580f4eb6bdee040137f2d4fb2b42bbd0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page