DeepBGC - Biosynthetic Gene Cluster detection and classification
Project description
# DeepBGC: Biosynthetic Gene Cluster detection and classification.
## Install DeepBGC
- Run `pip install deepbgc` to install the `deepbgc` python module.
- **Note**: Tensorflow is not available for Python 3.7 ([link](https://github.com/tensorflow/tensorflow/issues/17022)) so please use Python 3.6 if you experience this issue.
## Prerequisities
- Install Python 3.6 (version 3.7 is not supported by TensorFlow yet)
- Install Prodigal and put the `prodigal` binary it on your PATH: https://github.com/hyattpd/Prodigal/releases
- Install HMMER and put the `hmmscan` and `hmmpress` binaries on your PATH: http://hmmer.org/download.html
- Download and **extract** Pfam database from: ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0/Pfam-A.hmm.gz
## Use DeepBGC
### Detection
Detect BGCs in a genomic sequence.
```bash
# Show detection help
deepbgc detect --help
# Detect BGCs in a nucleotide sequence
deepbgc detect --model DeepBGCDetector_v0.0.1.pkl --pfam Pfam-A.hmm --output myCandidates/ myInputSequence.fa
# Detect BGCs with >0.9 score in existing Pfam CSV sequence
deepbgc detect --model myModel.pkl --output myStrictCandidates/ -s 0.9 myCandidates/myCandidates.pfam.csv
```
### Classification
Classify BGCs into one or more classes.
```bash
# Show classification help
deepbgc classify --help
# Predict biosynthetic class of detected BGCs
deepbgc classify --model RandomForestMIBiGClasses_v0.0.1.pkl --output myCandidates/myCandidates.classes.csv myCandidates/myCandidates.candidates.csv
```
### Trained Models
The trained model files can be found in the GitHub code release [here](https://github.com/Merck/deepbgc/releases).
## Install DeepBGC
- Run `pip install deepbgc` to install the `deepbgc` python module.
- **Note**: Tensorflow is not available for Python 3.7 ([link](https://github.com/tensorflow/tensorflow/issues/17022)) so please use Python 3.6 if you experience this issue.
## Prerequisities
- Install Python 3.6 (version 3.7 is not supported by TensorFlow yet)
- Install Prodigal and put the `prodigal` binary it on your PATH: https://github.com/hyattpd/Prodigal/releases
- Install HMMER and put the `hmmscan` and `hmmpress` binaries on your PATH: http://hmmer.org/download.html
- Download and **extract** Pfam database from: ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0/Pfam-A.hmm.gz
## Use DeepBGC
### Detection
Detect BGCs in a genomic sequence.
```bash
# Show detection help
deepbgc detect --help
# Detect BGCs in a nucleotide sequence
deepbgc detect --model DeepBGCDetector_v0.0.1.pkl --pfam Pfam-A.hmm --output myCandidates/ myInputSequence.fa
# Detect BGCs with >0.9 score in existing Pfam CSV sequence
deepbgc detect --model myModel.pkl --output myStrictCandidates/ -s 0.9 myCandidates/myCandidates.pfam.csv
```
### Classification
Classify BGCs into one or more classes.
```bash
# Show classification help
deepbgc classify --help
# Predict biosynthetic class of detected BGCs
deepbgc classify --model RandomForestMIBiGClasses_v0.0.1.pkl --output myCandidates/myCandidates.classes.csv myCandidates/myCandidates.candidates.csv
```
### Trained Models
The trained model files can be found in the GitHub code release [here](https://github.com/Merck/deepbgc/releases).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deepbgc-0.0.2.tar.gz
(22.8 kB
view details)
Built Distribution
deepbgc-0.0.2-py3-none-any.whl
(30.6 kB
view details)
File details
Details for the file deepbgc-0.0.2.tar.gz
.
File metadata
- Download URL: deepbgc-0.0.2.tar.gz
- Upload date:
- Size: 22.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12c66e1899cbb312f2e78997423988707832ddbcbfdb495c5466206d12cf8f90 |
|
MD5 | 4d92313c4b77731920785fd546b52be3 |
|
BLAKE2b-256 | 3ee5bdfa5dfa9b487d38bb8c8dbfe04c89c16c9e2634beb3c59ab213dc7f1531 |
File details
Details for the file deepbgc-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: deepbgc-0.0.2-py3-none-any.whl
- Upload date:
- Size: 30.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5429e1a4be9e3c40dcc5f96c72e668643fc9d20beefb3f7d5faa2fdf9b265ca5 |
|
MD5 | 87dbef7b5613e3f29246b73bf4a8158f |
|
BLAKE2b-256 | ed828085d5d4240c74d8ecfab3d593a5f7209efaeafb7a07d311b8646196ba4a |