Skip to main content

DeepBGC - Biosynthetic Gene Cluster detection and classification

Project description

# DeepBGC: Biosynthetic Gene Cluster detection and classification.

## Install DeepBGC

- Run `pip install deepbgc` to install the `deepbgc` python module.
- **Note**: Tensorflow is not available for Python 3.7 ([link](https://github.com/tensorflow/tensorflow/issues/17022)) so please use Python 3.6 if you experience this issue.

## Prerequisities

- Install Python 3.6 (version 3.7 is not supported by TensorFlow yet)
- Install Prodigal and put the `prodigal` binary it on your PATH: https://github.com/hyattpd/Prodigal/releases
- Install HMMER and put the `hmmscan` and `hmmpress` binaries on your PATH: http://hmmer.org/download.html
- Download and **extract** Pfam database from: ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0/Pfam-A.hmm.gz

## Use DeepBGC

### Detection

Detect BGCs in a genomic sequence.

```bash
# Show detection help
deepbgc detect --help

# Detect BGCs in a nucleotide sequence
deepbgc detect --model DeepBGCDetector_v0.0.1.pkl --pfam Pfam-A.hmm --output myCandidates/ myInputSequence.fa

# Detect BGCs with >0.9 score in existing Pfam CSV sequence
deepbgc detect --model myModel.pkl --output myStrictCandidates/ -s 0.9 myCandidates/myCandidates.pfam.csv

```

### Classification

Classify BGCs into one or more classes.

```bash
# Show classification help
deepbgc classify --help

# Predict biosynthetic class of detected BGCs
deepbgc classify --model RandomForestMIBiGClasses_v0.0.1.pkl --output myCandidates/myCandidates.classes.csv myCandidates/myCandidates.candidates.csv

```

### Trained Models

The trained model files can be found in the GitHub code release [here](https://github.com/Merck/deepbgc/releases).


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbgc-0.0.2.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

deepbgc-0.0.2-py3-none-any.whl (30.6 kB view details)

Uploaded Python 3

File details

Details for the file deepbgc-0.0.2.tar.gz.

File metadata

  • Download URL: deepbgc-0.0.2.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.6.8

File hashes

Hashes for deepbgc-0.0.2.tar.gz
Algorithm Hash digest
SHA256 12c66e1899cbb312f2e78997423988707832ddbcbfdb495c5466206d12cf8f90
MD5 4d92313c4b77731920785fd546b52be3
BLAKE2b-256 3ee5bdfa5dfa9b487d38bb8c8dbfe04c89c16c9e2634beb3c59ab213dc7f1531

See more details on using hashes here.

File details

Details for the file deepbgc-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: deepbgc-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 30.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.19.4 CPython/3.6.8

File hashes

Hashes for deepbgc-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5429e1a4be9e3c40dcc5f96c72e668643fc9d20beefb3f7d5faa2fdf9b265ca5
MD5 87dbef7b5613e3f29246b73bf4a8158f
BLAKE2b-256 ed828085d5d4240c74d8ecfab3d593a5f7209efaeafb7a07d311b8646196ba4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page