Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

crates pypi cli license pypi version Actions status

Deep Learning Processing Library for Biological Data

Setup

Python

install the latest deepbiop version with:

pip install deepbiop

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

cargo add deepbiop --features fq

Each enabled feature can then be imported by its re-exported name, e.g.,

use deepbiop::fastq;

CLI

cargo install deepbiop-cli
dbp -h

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.75.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.11.tar.gz (427.1 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.11-cp39-abi3-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.11-cp39-abi3-win32.whl (3.4 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.11-cp39-abi3-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.11-cp39-abi3-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.11-cp39-abi3-musllinux_1_2_armv7l.whl (4.2 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.11-cp39-abi3-musllinux_1_2_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.11-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.11-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (4.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.11-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.11-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (4.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.11-cp39-abi3-macosx_11_0_arm64.whl (3.3 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.11-cp39-abi3-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.11.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.11.tar.gz
  • Upload date:
  • Size: 427.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.1

File hashes

Hashes for deepbiop-0.1.11.tar.gz
Algorithm Hash digest
SHA256 25eb777c78098f7d56a4bd8cb9e15b3a22c6ca1c87c1a7bd5f103ef71c976316
MD5 c2543f45ba4045073eb78a08fc6a840e
BLAKE2b-256 22251bd59c9164334639daaa3ffa6df8f4ec121914011da2d68690f437da6a8c

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 8b23ebac178ff814b35a1ff5526bb2f358ef0bf5b48fefe43f027ba10380896d
MD5 587e4520a454192bad36c844825e4d58
BLAKE2b-256 48e38307bfb0fbf94171d0f8557b3308fb788fed8713c1d31ff398284cfdbb7d

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.11-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.1

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 5e3484c4b7c16fae663eeaee57cff6fc0a92f71d7b71ed1438dc305a279ae909
MD5 4ada4eb82a32505f6870ccfcc8cfdb72
BLAKE2b-256 9d5c012178c98e168c6ea56fc62c07dc5ffe4c07e6219766e1e69443826ef30e

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 44300cc30412b657e837c26420bbc36788dd1442a2e3c9220307ac09583c5148
MD5 311415567fa9ea242a7b880bc164f107
BLAKE2b-256 f7aee3650da58b5ecbdfcce2af525e60a46d2f4800f4765987b0f8e54cf7aed5

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4c6ecc0f0f66a61fbd3159c7292dfd6b2e989a8520500ebf2f100d608c794be9
MD5 e1ec6ac57b123cf467be0971afa2ad78
BLAKE2b-256 dba797c7299cde1e91b9f240e62d34c6f1b23638ba1759e90c6f38325ef240dc

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1f7a36d2446351ece4d926606e230e23b3c68d70bc9c7053da25831f05ca4840
MD5 291a869934f2485eb0855cd495478031
BLAKE2b-256 c4672d7b567b2516c5a96b1282981da379b22d59b45de8e75fcddb4c5672ef6f

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e8f1e669a177d6069f2da4beb5e31f33ffb07a5ea78ea97925db49d398057008
MD5 14494092616403a3bb8dd4462313a35b
BLAKE2b-256 4a7ef9ac556c1b73be5567722499a1066608ec901d942b39f8a280a98529f849

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e604e39add96a2f5de58d42fb47e882b5b546917b5b08a79bda13b1835c70bc5
MD5 aa8f47db1214b5b25f61cf4376c3ab8f
BLAKE2b-256 40ad94730eb36720f6a9d21eca6870b1b35f57e1dc4fe1bfff0ce22d598bddc5

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c70ee598935d5d4238e0b6bfebe4840e40a1f203c02aa96deaefad7be0072f09
MD5 9ae6a04e7111e1bb68afb4e543a42eb7
BLAKE2b-256 a64e430a490743e5d74d2ff8bad5681a33bf049b2bacdba02574e5218d3fb943

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96d4fc8d0388565b6c1b00a0c768defff9ac5611015c223df41a3756a8a1a273
MD5 1a037eb853ebdc3654afa38b40181d19
BLAKE2b-256 62e5aacfb3f008e758494710e5fa652da7e857cd759240763ab2c78d55f349ac

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac0e3f02e2e12946f2a848da97f74b40344559957a85e0233be8a9fee91d26e9
MD5 ea7ff3a8c7f85229b43eb85369cb3347
BLAKE2b-256 e5e78ae1422c8ed18710d333a3e8922efde14e40c3b3b51e898c4406aaded957

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3be0be30246c4eadce0c6ed08dc42ea118fcdc51751ca202411f9dbe249fac0
MD5 6c5a3793a61980c4397b797419f99b1c
BLAKE2b-256 b866600dab9013a689315cc6a3aed72407ceb35e909a8cb69a7853923e026323

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.11-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.11-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b53deb384aaffe49e87fb999126af1a3afed668c3bac17a3642534c0eef1a251
MD5 ff535f81fbaf6dca00f7b039e2150c21
BLAKE2b-256 d93be03b8ba91e028159320a193addf18adfc2abe0f28a62f548e468be73ebf0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page