Skip to main content

Deep Learning Preprocessing Library for Biological Data

Project description

DeepBioP

Deep Learning Processing Library for Biological Data

Minimum Supported Rust Version (MSRV)

This project adheres to a Minimum Supported Rust Version (MSRV) policy. The Minimum Supported Rust Version (MSRV) is 1.70.0. We ensure that all code within the project is compatible with this version or newer to maintain stability and compatibility.

Contribute 🤝

Call for Participation: Deep Learning Processing Library for Biological Data

We are excited to announce the launch of a new open-source project focused on developing a cutting-edge deep learning processing library specifically designed for biological data. This project aims to empower researchers, data scientists, and developers to leverage the latest advancements in deep learning to analyze and interpret complex biological datasets.

Project Overview:

Biological data, such as genomic sequences, proteomics, and imaging data, presents unique challenges and opportunities for machine learning applications. Our library seeks to provide a comprehensive suite of tools and algorithms that streamline the preprocessing, modeling, and analysis of biological data using deep learning techniques.

Key Features:

  • Data Preprocessing: Efficient tools for cleaning, normalizing, and augmenting biological data.
  • Model Building: Pre-built models and customizable architectures tailored for various types of biological data.
  • Visualization: Advanced visualization tools to help interpret model predictions and insights.
  • Integration: Seamless integration with popular bioinformatics tools and frameworks.
  • APIs: Rust and Python APIs to facilitate easy integration with different deep learning frameworks, ensuring efficient operations across platforms.

Who Should Participate?

We invite participation from individuals and teams who are passionate about bioinformatics, deep learning, and open-source software development. Whether you are a researcher, developer, or student, your contributions can help shape the future of biological data analysis.

How to Get Involved:

  • Developers: Contribute code, fix bugs, and develop new features.
  • Researchers: Share your domain expertise and help validate models.
  • Students: Gain experience by working on real-world data science problems.
  • Community Members: Provide feedback, report issues, and help grow the user community.

Join Us:

If you are interested in participating, please visit our GitHub repository at Github to explore the project and get started.

Contact Us:

For more information or questions, feel free to contact us at [yangyang.li@norwestern.edu]. We look forward to your participation and contributions to this exciting project!

Together, let's advance the field of biological data analysis with the power of deep learning!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepbiop-0.1.5.tar.gz (409.3 kB view details)

Uploaded Source

Built Distributions

deepbiop-0.1.5-cp39-abi3-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.9+ Windows x86-64

deepbiop-0.1.5-cp39-abi3-win32.whl (3.3 MB view details)

Uploaded CPython 3.9+ Windows x86

deepbiop-0.1.5-cp39-abi3-musllinux_1_2_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ x86-64

deepbiop-0.1.5-cp39-abi3-musllinux_1_2_i686.whl (4.0 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ i686

deepbiop-0.1.5-cp39-abi3-musllinux_1_2_armv7l.whl (4.1 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARMv7l

deepbiop-0.1.5-cp39-abi3-musllinux_1_2_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9+ musllinux: musl 1.2+ ARM64

deepbiop-0.1.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

deepbiop-0.1.5-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (3.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARMv7l

deepbiop-0.1.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.5 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ ARM64

deepbiop-0.1.5-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl (3.9 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.12+ i686

deepbiop-0.1.5-cp39-abi3-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

deepbiop-0.1.5-cp39-abi3-macosx_10_12_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file deepbiop-0.1.5.tar.gz.

File metadata

  • Download URL: deepbiop-0.1.5.tar.gz
  • Upload date:
  • Size: 409.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.5.tar.gz
Algorithm Hash digest
SHA256 fb60560d8eb129f3af2383f9702d77bcf002236f2c07045b9bae745a65616ebe
MD5 ce9ac82a57a34ae674a745e7d600e0dc
BLAKE2b-256 346eeecc0da238ab3d94ebbc6041c34a6834f23f9594104c02f072c90c6a43f0

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e8103d85c18f8df506ad8139d32f71d3a64034e2025b45e93b125622ecf6098d
MD5 26c69332d9ea54ebcff97c930d1e68ce
BLAKE2b-256 1331d2a93c5f372279f531808bc3673aee162590d38a24845287f00f2902045f

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-win32.whl.

File metadata

  • Download URL: deepbiop-0.1.5-cp39-abi3-win32.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-win32.whl
Algorithm Hash digest
SHA256 c3d1137579fa59973f90c0078074d74e96abc25541856f0a803caf7a0e0db6d3
MD5 52f2a80514b3cefdd71221f935e237de
BLAKE2b-256 3f881f57518f0e3dddda592b15780930379b43e10d025ca7f1f06aee8b1b61f9

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b76197d8f0d7cb1b6bb758115f6a238bdb8e83e202e9ef176d7f44f1ed3ee638
MD5 0785add83408b768aea041d7bab32cc5
BLAKE2b-256 dbb7749fb2ff1e948a9b0d0afc34a009c42a349cff16d2868bf73c0c6d77163f

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ca1125080137a63d0ae6520689134aabce9dd6cdf5bd20b124b6949d85d0960c
MD5 4376de85271055434b444932e7ab141e
BLAKE2b-256 20435809fefbb30c12aa4aae67ff703cacccdea162f9d46ae5c77f34c01fb545

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 cfe2203a05fbd26cb9e2a16c0f22437a512c8487855d48dff87d845f701bd93c
MD5 9db2f8be30adb20e2733b477335025fe
BLAKE2b-256 3f86389e2d2e87cbb71b96dd3a450a0c90764a783b4f4c0af96497f328c55681

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 58fcb50bf550430512ebb71ffd118964d81ba56d3a6784c29e4558eddf6ca31d
MD5 01983bc3b37a3c9901ae0a2acea253ed
BLAKE2b-256 d1ea9c189bbf1f2953dbd628cc03006c5be1940918854e65e6f15d3b364d8565

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9828de3e2c9ada0bbedbd4b6c158387a07e92355e8dfc70d77c46345b7fc02eb
MD5 8598b1e50055901659ce335511e73639
BLAKE2b-256 f47a6551686df828aedfcb336da122fc8a4ba0a467d0e269f96960e66d045b5f

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 fec19349c125419adff4be9d0bfbca870951cd4e3279fda4ff52f6ac3d70d652
MD5 9ab0b9c0a1edd372f1300c4658922e4e
BLAKE2b-256 58d5b7fe7364b5d668ee9aec678c9e76d7ef0d971cec55bb9fd80d615db38eda

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6678104b8b5bbedd990fbb0662b2e988b1848c47b8e3cf3e5b99aa99a6f2bb3
MD5 1ef51bdd79f87caac2886e9b18eb75de
BLAKE2b-256 a96e618082d4c5caec8c08f0eeacc46eb0a224aa357c73987dac788813706fed

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a03dc75d3066cfc3df949e2e7ae03e6f82186511837e7bb3253839425b5b0a18
MD5 6a5a5df1ccec2e1ffcf6d51e66d980de
BLAKE2b-256 64221fab9c582848c7bff4875ceede17134cfadfb1dfa850edd790daed7fb595

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a239c26e8f80dc9cfe81d04614c4ee2404503fc778036ab5613042edf10691a
MD5 d52e96e823102b0912198e307fd1a590
BLAKE2b-256 f944f8fb2524c45054385cf3956fc03e6e1005a7a791a9f38f2f5d87fce91ed5

See more details on using hashes here.

File details

Details for the file deepbiop-0.1.5-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for deepbiop-0.1.5-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0d30cec12ea061aa27f3ab6268986ae12a6e2d431e5c558fb2cb3338cf209aaa
MD5 a5674d173fad9dbb0390064c5cddcf29
BLAKE2b-256 828e8ef460c887aa86762997c15cc38ff7a563d5f1480db9268d1ddc76d919df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page