Skip to main content

Deep Difference and Search of any Python object/data.

Project description

**DeepDiff v 2.1.2**

Deep Difference of dictionaries, iterables, strings and other objects. It will recursively look for all the changes.

Tested on Python 2.7, 3.3, 3.4, 3.5, Pypy, Pypy3

Note: Checkout the github repo's readme for complete coverage of features:
https://github.com/seperman/deepdiff

**Parameters**

In addition to the 2 objects being compared:

- ignore_order
- report_repetition
- verbose_level

**Returns**

A DeepDiff object that has already calculated the difference of the 2 items.

**Supported data types**

int, string, unicode, dictionary, list, tuple, set, frozenset, OrderedDict, NamedTuple and custom objects!

**Examples**


Importing
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function # In case running on Python 2

Same object returns empty
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> print(DeepDiff(t1, t2))
{}

Type of an item has changed
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{ 'type_changes': { 'root[2]': { 'new_type': <class 'str'>,
'new_value': '2',
'old_type': <class 'int'>,
'old_value': 2}}}

Value of an item has changed
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> pprint(DeepDiff(t1, t2), indent=2)
{'values_changed': {'root[2]': {'new_value': 4, 'old_value': 2}}}

Item added and/or removed
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff)
{'dictionary_item_added': ['root[5]', 'root[6]'],
'dictionary_item_removed': ['root[4]'],
'values_changed': {'root[2]': {'new_value': 4, 'old_value': 2}}}

String difference
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { 'root[2]': {'new_value': 4, 'old_value': 2},
"root[4]['b']": { 'new_value': 'world!',
'old_value': 'world'}}}


String difference 2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'values_changed': { "root[4]['b']": { 'diff': '--- \n'
'+++ \n'
'@@ -1,5 +1,4 @@\n'
'-world!\n'
'-Goodbye!\n'
'+world\n'
' 1\n'
' 2\n'
' End',
'new_value': 'world\n1\n2\nEnd',
'old_value': 'world!\n'
'Goodbye!\n'
'1\n'
'2\n'
'End'}}}

>>>
>>> print (ddiff['values_changed']["root[4]['b']"]["diff"])
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End

Type change
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'type_changes': { "root[4]['b']": { 'new_type': <class 'str'>,
'new_value': 'world\n\n\nEnd',
'old_type': <class 'list'>,
'old_value': [1, 2, 3]}}}

List difference
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3, 4]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{'iterable_item_removed': {"root[4]['b'][2]": 3, "root[4]['b'][3]": 4}}

List difference 2:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'iterable_item_added': {"root[4]['b'][3]": 3},
'values_changed': { "root[4]['b'][1]": {'new_value': 3, 'old_value': 2},
"root[4]['b'][2]": {'new_value': 2, 'old_value': 3}}}

List difference ignoring order or duplicates: (with the same dictionaries as above)
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2, 3]}}
>>> ddiff = DeepDiff(t1, t2, ignore_order=True)
>>> print (ddiff)
{}

List that contains dictionary:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff, indent = 2)
{ 'dictionary_item_removed': ["root[4]['b'][2][2]"],
'values_changed': {"root[4]['b'][2][1]": {'new_value': 3, 'old_value': 1}}}

Sets:
>>> t1 = {1, 2, 8}
>>> t2 = {1, 2, 3, 5}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (DeepDiff(t1, t2))
{'set_item_added': ['root[3]', 'root[5]'], 'set_item_removed': ['root[8]']}

Named Tuples:
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> t1 = Point(x=11, y=22)
>>> t2 = Point(x=11, y=23)
>>> pprint (DeepDiff(t1, t2))
{'values_changed': {'root.y': {'new_value': 23, 'old_value': 22}}}

Custom objects:
>>> class ClassA(object):
... a = 1
... def __init__(self, b):
... self.b = b
...
>>> t1 = ClassA(1)
>>> t2 = ClassA(2)
>>>
>>> pprint(DeepDiff(t1, t2))
{'values_changed': {'root.b': {'new_value': 2, 'old_value': 1}}}

Object attribute added:
>>> t2.c = "new attribute"
>>> pprint(DeepDiff(t1, t2))
{'attribute_added': ['root.c'],
'values_changed': {'root.b': {'new_value': 2, 'old_value': 1}}}

Exclude certain types from comparison:
>>> l1 = logging.getLogger("test")
>>> l2 = logging.getLogger("test2")
>>> t1 = {"log": l1, 2: 1337}
>>> t2 = {"log": l2, 2: 1337}
>>> print(DeepDiff(t1, t2, exclude_types={logging.Logger}))
{}

Exclude part of your object tree from comparison:
>>> t1 = {"for life": "vegan", "ingredients": ["no meat", "no eggs", "no dairy"]}
>>> t2 = {"for life": "vegan", "ingredients": ["veggies", "tofu", "soy sauce"]}
>>> print (DeepDiff(t1, t2, exclude_paths={"root['ingredients']"}))
{}


Using DeepDiff in unit tests
result is the output of the function that is being tests.
expected is the expected output of the function.
>>> assertEqual(DeepDiff(result, expected), {})




**Difference with Json Patch**

Unlike Json Patch https://tools.ietf.org/html/rfc6902 which is designed only for Json objects, DeepDiff is designed specifically for almost all Python types. In addition to that, DeepDiff checks for type changes and attribute value changes that Json Patch does not cover since there are no such things in Json. Last but not least, DeepDiff gives you the exact path of the item(s) that were changed in Python syntax.

Example in Json Patch for replacing:
{ "op": "replace", "path": "/a/b/c", "value": 42 }

Example in DeepDiff for the same operation:
>>> item1 = {'a':{'b':{'c':'foo'}}}
>>> item2 = {'a':{'b':{'c':42}}}
>>> DeepDiff(item1, item2)
{'type_changes': {"root['a']['b']['c']": {'old_type': <type 'str'>, 'new_value': 42, 'old_value': 'foo', 'new_type': <type '

**Pycon 2016**

I was honored to give a talk about how DeepDiff does what it does at Pycon 2016. Please check out the video and let me know what you think:

Diff It To Dig It Video
https://www.youtube.com/watch?v=J5r99eJIxF4
And here is more info:
http://zepworks.com/blog/diff-it-to-digg-it/


**Changelog**

- v2-1-0: Adding Deep Search. Now you can search for item in an object.
- v2-0-0: Exclusion patterns better coverage. Updating docs.
- v1-8-0: Exclusion patterns.
- v1-7-0: Deep Set comparison.
- v1-6-0: Unifying key names. i.e newvalue is new_value now. For backward compatibility, newvalue still works.
- v1-5-0: Fixing ignore order containers with unordered items. Adding significant digits when comparing decimals. Changes property is deprecated.
- v1-1-0: Changing Set, Dictionary and Object Attribute Add/Removal to be reported as Set instead of List. Adding Pypy compatibility.
- v1-0-2: Checking for ImmutableMapping type instead of dict
- v1-0-1: Better ignore order support
- v1-0-0: Restructuring output to make it more useful. This is NOT backward compatible.
- v0-6-1: Fixiing iterables with unhashable when order is ignored
- v0-6-0: Adding unicode support
- v0-5-9: Adding decimal support
- v0-5-8: Adding ignore order of unhashables support
- v0-5-7: Adding ignore order support
- v0-5-6: Adding slots support
- v0-5-5: Adding loop detection

**Primary Author**
Sep Dehpour

Github: https://github.com/seperman
Linkedin: http://www.linkedin.com/in/sepehr
ZepWorks: http://www.zepworks.com
Article about Deepdiff: http://zepworks.com/blog/diff-it-to-digg-it/

**Contributors**

Thanks to:

- nfvs for Travis-CI setup script
- brbsix for initial Py3 porting
- WangFenjin for unicode support
- timoilya for comparing list of sets when ignoring order
- Bernhard10 for significant digits comparison
- b-jazz for PEP257 cleanup, Standardize on full names, fixing line endings.
- Victor Hahn Castell @ Flexoptix for deep set comparison and exclusion patterns

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepdiff-2.1.2.tar.gz (12.8 kB view details)

Uploaded Source

Built Distributions

deepdiff-2.1.2-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

deepdiff-2.1.2-py2-none-any.whl (24.9 kB view details)

Uploaded Python 2

File details

Details for the file deepdiff-2.1.2.tar.gz.

File metadata

  • Download URL: deepdiff-2.1.2.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for deepdiff-2.1.2.tar.gz
Algorithm Hash digest
SHA256 55f94c2e3c7d1b6b65c8f2223bc008ee7a9c311927dd16917185621798acfca3
MD5 1570d6133e75ebc82eb6f6f4b0436e99
BLAKE2b-256 6ff27e50c260e5b03f1e44657ac45cb0d418e5fe90cc512cd927729afbe5c4de

See more details on using hashes here.

Provenance

File details

Details for the file deepdiff-2.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for deepdiff-2.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 cca7724907a0c6e43fd60317f26e75b423a6eda0703187778d2ab89faba03eae
MD5 65d21e10c31bbc1353f3c07de3a5d628
BLAKE2b-256 34767883a51449b5cdab4b7238ade85a976ba9c6a9329a49c8f317b773d22c75

See more details on using hashes here.

Provenance

File details

Details for the file deepdiff-2.1.2-py2-none-any.whl.

File metadata

File hashes

Hashes for deepdiff-2.1.2-py2-none-any.whl
Algorithm Hash digest
SHA256 385d48ffb3dbc190a947870e891a72af3ed606b36348485c32dde06043fd7555
MD5 4f56d974f48066f5bfef0556d33fb93d
BLAKE2b-256 928e973e237b7ac53e10e1549dbba2caf2abf4f2abf27ba761c4fea19c3aef36

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page