Skip to main content

No project description provided

Project description

deepepochs

Pytorch模型简易训练工具

使用

常规训练流程

from deepepochs import Trainer, Checker
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF


# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds = random_split(mnist_full, [55000, 5000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)

# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)

# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(channels * width * height, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 10)
)

def acc(preds, targets):
    return MF.accuracy(preds, targets, task='multiclass', num_classes=10)

def r(preds, targets):
    return MF.recall(preds, targets, task='multiclass', num_classes=10)

def f1(preds, targets):
    return MF.f1_score(preds, targets, task='multiclass', num_classes=10)

checker = Checker('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, checker=checker, metrics=[acc, r, f1])

progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)

非常规训练流程

  • 第1步:继承torchepochs.TrainerBase类,定制满足需要的Trainer,实现train_step方法和evaluate_step方法
  • 第2步:调用定制Trainer训练模型。

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepepochs-0.1.2.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

deepepochs-0.1.2-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file deepepochs-0.1.2.tar.gz.

File metadata

  • Download URL: deepepochs-0.1.2.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.1.2.tar.gz
Algorithm Hash digest
SHA256 c6ab3b4ef4e7db7149decb4bde841a471c94a3993a4f961afa9e2735744e1d3f
MD5 41d3c4de8a7bdcc267f59b0dc508fac9
BLAKE2b-256 8a25cb28015027743bf975b92ce0812789f7b9421b5ffa171553da3e1198a14e

See more details on using hashes here.

File details

Details for the file deepepochs-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: deepepochs-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 8.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 699afa4dc9880f761bdd8069087728beab7415915556646af8ebb123b53bbb3a
MD5 8eddf420af0584d0f6686ab8d5d20009
BLAKE2b-256 bf2df6279a18c30040b5a046d1138ce82143d1cb8b1eaabeb0617cb85ead1774

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page