No project description provided
Project description
deepepochs
Pytorch模型简易训练工具
使用
常规训练流程
from deepepochs import Trainer, Checker
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF
# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds = random_split(mnist_full, [55000, 5000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)
# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)
# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
nn.Flatten(),
nn.Linear(channels * width * height, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 10)
)
def acc(preds, targets):
return MF.accuracy(preds, targets, task='multiclass', num_classes=10)
def r(preds, targets):
return MF.recall(preds, targets, task='multiclass', num_classes=10)
def f1(preds, targets):
return MF.f1_score(preds, targets, task='multiclass', num_classes=10)
checker = Checker('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, checker=checker, metrics=[acc, r, f1])
progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)
非常规训练流程
- 第1步:继承
torchepochs.TrainerBase
类,定制满足需要的Trainer
,实现train_step
方法和evaluate_step
方法 - 第2步:调用定制
Trainer
训练模型。
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
deepepochs-0.1.2.tar.gz
(7.6 kB
view details)
Built Distribution
File details
Details for the file deepepochs-0.1.2.tar.gz
.
File metadata
- Download URL: deepepochs-0.1.2.tar.gz
- Upload date:
- Size: 7.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6ab3b4ef4e7db7149decb4bde841a471c94a3993a4f961afa9e2735744e1d3f |
|
MD5 | 41d3c4de8a7bdcc267f59b0dc508fac9 |
|
BLAKE2b-256 | 8a25cb28015027743bf975b92ce0812789f7b9421b5ffa171553da3e1198a14e |
File details
Details for the file deepepochs-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: deepepochs-0.1.2-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 699afa4dc9880f761bdd8069087728beab7415915556646af8ebb123b53bbb3a |
|
MD5 | 8eddf420af0584d0f6686ab8d5d20009 |
|
BLAKE2b-256 | bf2df6279a18c30040b5a046d1138ce82143d1cb8b1eaabeb0617cb85ead1774 |