Skip to main content

No project description provided

Project description

deepepochs

Pytorch模型简易训练工具

使用

常规训练流程

from deepepochs import Trainer, Checker
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF


# datasets
data_dir = './datasets'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds = random_split(mnist_full, [55000, 5000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)

# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)

# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(channels * width * height, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 10)
)

def acc(preds, targets):
    return MF.accuracy(preds, targets, task='multiclass', num_classes=10)

def r(preds, targets):
    return MF.recall(preds, targets, task='multiclass', num_classes=10)

def f1(preds, targets):
    return MF.f1_score(preds, targets, task='multiclass', num_classes=10)

checker = Checker('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, checker=checker, metrics=[acc, r, f1])

progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)

非常规训练流程

  • 第1步:继承deepepochs.TrainerBase类,定制满足需要的Trainer,实现train_step方法和evaluate_step方法
  • 第2步:调用定制Trainer训练模型。

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepepochs-0.1.4.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

deepepochs-0.1.4-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file deepepochs-0.1.4.tar.gz.

File metadata

  • Download URL: deepepochs-0.1.4.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.1.4.tar.gz
Algorithm Hash digest
SHA256 bdff89f76a8c94b4cd0c154a7d255705476aa61f24a18906abcd364dc765b5f4
MD5 ab21b1e18cf29e81cfad98cbc9766b42
BLAKE2b-256 7ffd0720384a08a1170b644cc4dc74955d38267f1af1139115148e9f5482f3cf

See more details on using hashes here.

File details

Details for the file deepepochs-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: deepepochs-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 91eec526338bac89a78cd0df720a2cb8169f4008374ba561ed49fed705ee022f
MD5 63eb1e93ac45fc0fbdaa5382df0c8df3
BLAKE2b-256 7308c2dfdd17586c563d79e8206d695949db1376a868807fddf545329ad5ece0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page