Skip to main content

An easy-to-use tool for training Pytorch deep learning models

Project description

DeepEpochs

Pytorch深度学习模型训练工具。

使用

常规训练流程

from deepepochs import Trainer, Checker, rename
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.datasets import MNIST
from torchvision import transforms
from torch.utils.data import DataLoader, random_split
from torchmetrics import functional as MF

# datasets
data_dir = './dataset'
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
mnist_full = MNIST(data_dir, train=True, transform=transform, download=True)
train_ds, val_ds, _ = random_split(mnist_full, [5000, 5000, 50000])
test_ds = MNIST(data_dir, train=False, transform=transform, download=True)

# dataloaders
train_dl = DataLoader(train_ds, batch_size=32)
val_dl = DataLoader(val_ds, batch_size=32)
test_dl = DataLoader(test_ds, batch_size=32)

# pytorch model
channels, width, height = (1, 28, 28)
model = nn.Sequential(
    nn.Flatten(),
    nn.Linear(channels * width * height, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Dropout(0.1),
    nn.Linear(64, 10)
)

def acc(preds, targets):
    return MF.accuracy(preds, targets, task='multiclass', num_classes=10)

@rename('')
def multi_metrics(preds, targets):
    return {
        'p': MF.precision(preds, targets, task='multiclass', num_classes=10),
        'r': MF.recall(preds, targets, task='multiclass', num_classes=10)
        }


checker = Checker('loss', mode='min', patience=2)
opt = torch.optim.Adam(model.parameters(), lr=2e-4)
trainer = Trainer(model, F.cross_entropy, opt=opt, epochs=100, checker=checker, metrics=[acc, multi_metrics])

progress = trainer.fit(train_dl, val_dl)
test_rst = trainer.test(test_dl)

非常规训练流程

  • 方法1:
    • 第1步:继承deepepochs.TrainerBase类,定制满足需要的Trainer,实现train_step方法和evaluate_step方法
    • 第2步:调用定制Trainer训练模型。
  • 方法2:
    • 第1步:继承deepepochs.Callback类,定制满足需要的Callback
    • 第2步:使用deepepochs.Learner训练模型,将定制的Callback作为Learner的参数
    • 提示Learner是具有Callback功能的Trainer

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepepochs-0.2.1.tar.gz (17.2 kB view details)

Uploaded Source

Built Distribution

deepepochs-0.2.1-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file deepepochs-0.2.1.tar.gz.

File metadata

  • Download URL: deepepochs-0.2.1.tar.gz
  • Upload date:
  • Size: 17.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.2.1.tar.gz
Algorithm Hash digest
SHA256 d1e83519fd0dcf3055a5f0122055f1141f4bc5c9af2d25fe9920a8b725373e4f
MD5 61fbca3f6787c601bec9cce2244c7ed0
BLAKE2b-256 21e5e2a6837e973693332fd47bdd8af075deceb71400d47cd8b24bd98e6ce819

See more details on using hashes here.

File details

Details for the file deepepochs-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: deepepochs-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for deepepochs-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8633357cc8d87a3589970e330b631c6d4d56f6b95cb53a3abaaf321e74d5176d
MD5 40571ea07d3278467d2904611e87b8fa
BLAKE2b-256 67e65fd0eb16cf6f550506cb89facc44dfa97f4faf13c601d3f6f2c936b23014

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page